版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届南湾中学中考数学最后一模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB2.若分式的值为零,则x的值是()A.1 B. C. D.23.已知x=2﹣3,则代数式(7+43)x2+(2+3)x+3的值是()A.0 B.3 C.2+3 D.2﹣34.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-35.计算±的值为()A.±3 B.±9 C.3 D.96.计算的结果是()A.1 B.-1 C. D.7.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是()A.a<3B.a>3C.a<﹣3D.a>﹣38.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有()A.6个 B.7个 C.8个 D.9个9.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A. B.C. D.10.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于A.90° B.180° C.210° D.270°二、填空题(共7小题,每小题3分,满分21分)11.已知△ABC中,AB=6,AC=BC=5,将△ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E.F分别在边AB、AC上).当以B.E.D为顶点的三角形与△DEF相似时,BE的长为_____.12.化简÷=_____.13.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为_____.14.如图,已知,D、E分别是边BA、CA延长线上的点,且如果,,那么AE的长为______.15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.16.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是______.17.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为_____cm.三、解答题(共7小题,满分69分)18.(10分)先化简,后求值:a2•a4﹣a8÷a2+(a3)2,其中a=﹣1.19.(5分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.20.(8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整).类别分数段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5请你根据上面的信息,解答下列问题.(1)若A组的频数比B组小24,求频数直方图中的a,b的值;(2)在扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数直方图;(3)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?21.(10分)如图1所示,点E在弦AB所对的优弧上,且BE为半圆,C是BE上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:①连接BE,则BE的长约为cm.②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为cm.22.(10分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.23.(12分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.24.(14分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F.(1)求圆O的半径;(2)如果AE=6,求EF的长.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.2、A【解析】试题解析:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.3、C【解析】
把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2﹣3时,(7+43)x2+(2+3)x+3=(7+43)(2﹣3)2+(2+3)(2﹣3)+3=(7+43)(7-43)+1+3=49-48+1+3=2+3故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.4、B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.5、B【解析】
∵(±9)2=81,∴±±9.故选B.6、C【解析】
原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:==,故选:C.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.7、B【解析】试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.考点:一元二次方程与函数8、A【解析】
根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.9、D【解析】
摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.故选D.【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.10、B【解析】
试题分析:如图,如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故选B二、填空题(共7小题,每小题3分,满分21分)11、3或【解析】
以B.E.D为顶点的三角形与△DEF相似分两种情形画图分别求解即可.【详解】如图作CM⊥AB当∠FED=∠EDB时,∵∠B=∠EAF=∠EDF∴△EDF~△DBE∴EF∥CB,设EF交AD于点O∵AO=OD,OE∥BD∴AE=EB=3当∠FED=∠DEB时则∠FED=∠FEA=∠DEB=60°此时△FED~△DEB,设AE=ED=x,作DN⊥AB于N,则EN=,DN=,∵DN∥CM,∴∴∴x∴BE=6-x=故答案为3或【点睛】本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.12、x+1【解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式=÷=•(x+1)(x﹣1)=x+1,故答案为x+1.点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.13、1【解析】分析:由PD−PC=PD−PG≤DG,当点P在DG的延长线上时,PD−PC的值最大,最大值为DG=1.详解:在BC上取一点G,使得BG=1,如图,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,当点P在DG的延长线上时,PD−PC的值最大,最大值为DG==1.故答案为1点睛:本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.14、【解析】
由DE∥BC不难证明△ABC△ADE,再由,将题中数值代入并根据等量关系计算AE的长.【详解】解:由DE∥BC不难证明△ABC△ADE,∵,CE=4,∴,解得:AE=故答案为.【点睛】本题考查了相似三角形的判定和性质,熟记三角形的判定和性质是解题关键.15、1【解析】
画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,∴4x=1,
即菱形的最大周长为1cm.
故答案是:1.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.16、k<5且k≠1.【解析】试题解析:∵关于x的一元二次方程有两个不相等的实数根,解得:且故答案为且17、1【解析】
根据比例中项的定义,列出比例式即可得出中项,注意线段长度不能为负.【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=2×8,解得c=±1(线段是正数,负值舍去),故答案为1.【点睛】此题考查了比例线段.理解比例中项的概念,这里注意线段长度不能是负数.三、解答题(共7小题,满分69分)18、1【解析】
先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.【详解】原式=a6﹣a6+a6=a6,当a=﹣1时,原式=1.【点睛】本题主要考查同底数幂的乘除以及幂的乘方运算法则.19、【解析】
过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得.【详解】解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,
∵房子后坡度AB与前坡度AC相等,
∴∠BAD=∠CAE,
∵∠BAC=120°,
∴∠BAD=∠CAE=30°,
在直角△ABD中,AB=4米,
∴BD=2米,
在直角△ACE中,AC=6米,
∴CE=3米,
∴a-b=1米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.20、(1)40(2)126°,1(3)940名【解析】
(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【详解】(1)学生总数是24÷(20%﹣8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C组的人数是:200×25%=1.;(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21、(1)详见解析;(2)详见解析;(3)①6;②6或4.1.【解析】
(1)由题意得出BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BD=BC2-CD2≈0.9367(cm),得出AD=AB(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象即可;(3)①∵BC=6时,CD=AC=4.1,即点C与点E重合,CD与AC重合,BC为直径,得出BE=BC=6即可;②分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6;当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6,由图象可得:BC=4.1.【详解】(1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如图1所示:∵CD⊥AB,∴BD=BC2-∴AD=AB+BD=4+0.9367=4.9367(cm),∴AC=CD2补充完整如下表:(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:(3)①∵BC=6cm时,CD=AC=4.1cm,即点C与点E重合,CD与AC重合,BC为直径,∴BE=BC=6cm,故答案为:6;②以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6cm;当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6cm,由图象可得:BC=4.1cm;综上所述:BC的长度约为6cm或4.1cm;故答案为:6或4.1.【点睛】本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键.22、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络安全技术发起人协议书
- 矿山开采土方施工协议
- 武汉市飞机租赁合同范本
- 康复设备租赁合同小区康复规定
- 国际度假村建设合同范本
- 商品房限价销售管理规定
- 供应链优化条例
- 珠宝首饰合同签订及执行管理办法
- 污水处理项目评审案例
- 古城墙遗址翻新改造合同
- 2024年新人教版七年级上册数学教学课件 4.2 整式的加法与减法 第2课时 去括号
- 高校实验室安全通识课学习通超星期末考试答案章节答案2024年
- 2024年秋季新人教版七年级上册生物全册教案设计
- 第15课 两次鸦片战争 教学设计 高中历史统编版(2019)必修中外历史纲要上册+
- 期末知识点复习 2024-2025学年统编版语文九年级上册
- 《江苏省一年级上学期数学第二单元试卷》
- 2024-2025学年度第一学期七年级语文课内阅读练习含答案
- 幼儿园三年发展规划(2024年-2026年)
- 上海市普通高中学业水平合格性考试地理基础知识点复习提纲
- 2024年艾滋病知识题库
- 废旧风机叶片循环利用项目可行性研究报告-积极稳妥推进碳达峰碳中和
评论
0/150
提交评论