




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省丹东市第六中学中考数学最后冲刺模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列计算结果正确的是()A. B.C. D.2.若a与5互为倒数,则a=()A. B.5 C.-5 D.3.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D4.下列各数3.1415926,,,,,中,无理数有()A.2个 B.3个 C.4个 D.5个5.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a的取值范围是()A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<06.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分7.的绝对值是()A.8 B.﹣8 C. D.﹣8.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180° B.减小(n﹣2)×180°C.增加(n﹣1)×180° D.没有改变9.的相反数是()A.﹣ B. C. D.210.计算﹣2+3的结果是()A.1 B.﹣1 C.﹣5 D.﹣6二、填空题(共7小题,每小题3分,满分21分)11.若a、b为实数,且b=+4,则a+b=_____.12.已知方程的一个根为1,则的值为__________.13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为_______.14.在△ABC中,AB=1,BC=2,以AC为边作等边三角形ACD,连接BD,则线段BD的最大值为_____.15.如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_______.16.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__________°.17.如图,AB是圆O的直径,AC是圆O的弦,AB=2,∠BAC=30°.在图中画出弦AD,使AD=1,则∠CAD的度数为_____°.三、解答题(共7小题,满分69分)18.(10分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.19.(5分)已知关于的二次函数(1)当时,求该函数图像的顶点坐标.(2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值(3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.20.(8分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.21.(10分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.22.(10分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=,求AB的长.23.(12分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式
粗加工后销售
精加工后销售
每吨获利(元)
1000
2000
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?24.(14分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项.【详解】A、原式,故错误;B、原式,故错误;C、利用合并同类项的知识可知该选项正确;D、,,所以原式无意义,错误,故选C.【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大.2、A【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.详解:根据题意可得:5a=1,解得:a=,故选A.点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.3、C【解析】试题解析:、由监测点监测时,函数值随的增大先减少再增大.故选项错误;、由监测点监测时,函数值随的增大而增大,故选项错误;、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;、由监测点监测时,函数值随的增大而减小,选项错误.故选.4、B【解析】
根据无理数的定义即可判定求解.【详解】在3.1415926,,,,,中,,3.1415926,是有理数,,,是无理数,共有3个,故选:B.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5、B【解析】由已知抛物线求出对称轴,解:抛物线:,对称轴,由判别式得出a的取值范围.,,∴,①,.②由①②得.故选B.6、C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7、C【解析】
根据绝对值的计算法则解答.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.【详解】解:.故选【点睛】此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.8、D【解析】
根据多边形的外角和等于360°,与边数无关即可解答.【详解】∵多边形的外角和等于360°,与边数无关,∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.9、A【解析】分析:根据相反数的定义结合实数的性质进行分析判断即可.详解:的相反数是.故选A.点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键.10、A【解析】
根据异号两数相加的法则进行计算即可.【详解】解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.故选A.【点睛】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.二、填空题(共7小题,每小题3分,满分21分)11、5或1【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a的值,b的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a=1,或a=﹣1,b=4,当a=1时,a+b=1+4=5,当a=﹣1时,a+b=﹣1+4=1,故答案为5或1.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.12、1【解析】
欲求m,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m值.【详解】设方程的另一根为x1,又∵x=1,∴,解得m=1.故答案为1.【点睛】本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题.此题也可将x=1直接代入方程3x2-9x+m=0中求出m的值.13、【解析】
设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图像可得出B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义即可求解.【详解】设△OAC和△BAD的直角边长分别为a、b,则B点坐标为(a+b,a-b)∵点B在反比例函数y=在第一象限的图象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=a2-b2=【点睛】此题主要考查等腰直角三角形的面积求法和反比例函数k值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k值的性质.14、3【解析】
以AB为边作等边△ABE,由题意可证△AEC≌△ABD,可得BD=CE,根据三角形三边关系,可求EC的最大值,即可求BD的最大值.【详解】如图:以AB为边作等边△ABE,
,
∵△ACD,△ABE是等边三角形,
∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,
∴∠EAC=∠BAD,且AE=AB,AD=AC,
∴△DAB≌△CAE(SAS)
∴BD=CE,
若点E,点B,点C不共线时,EC<BC+BE;
若点E,点B,点C共线时,EC=BC+BE.
∴EC≤BC+BE=3,
∴EC的最大值为3,即BD的最大值为3.
故答案是:3【点睛】考查了旋转的性质,等边三角形的性质,全等三角形的判定和性质,以及三角形的三边关系,恰当添加辅助线构造全等三角形是本题的关键.15、16【解析】
根据题意得S△BDE:S△OCE=1:9,故BD:OC=1:3,设D(a,b)则A(a,0),B(a,2b),得C(0,3b),由S△OCE=9得ab=8,故可得解.【详解】解:设D(a,b)则A(a,0),B(a,2b)∵S△BDE:S△OCE=1:9∴BD:OC=1:3∴C(0,3b)∴△COE高是OA的,∴S△OCE=3ba×=9解得ab=8k=a×2b=2ab=2×8=16故答案为16.【点睛】此题利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.16、1【解析】试题分析:由三角形的外角的性质可知,∠1=90°+30°=1°,故答案为1.考点:三角形的外角性质;三角形内角和定理.17、30或1.【解析】
根据题意作图,由AB是圆O的直径,可得∠ADB=∠AD′B=1°,继而可求得∠DAB的度数,则可求得答案.【详解】解:如图,∵AB是圆O的直径,∴∠ADB=∠AD′B=1°,∵AD=AD′=1,AB=2,∴cos∠DAB=cosD′AB=,∴∠DAB=∠D′AB=60°,∵∠CAB=30°,∴∠CAD=30°,∠CAD′=1°.∴∠CAD的度数为:30°或1°.故答案为30或1.【点睛】本题考查圆周角定理;含30度角的直角三角形.三、解答题(共7小题,满分69分)18、(1)相等或互补;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】
(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题,②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;当点C,D在直线MN两侧时,如图2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D与∠MAC之间的数量是相等或互补;(2)①猜想:BD+AB=BC如图3,在射线AM上截取AF=BD,连接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AF+AB=BF=∴BD+AB=;②如图2,在射线AM上截取AF=BD,连接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AB﹣AF=BF=∴AB﹣BD=;(3)①当点C,D在直线MN同侧时,如图3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,过点D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD=,∴DG=BG=1,在Rt△CGD中,∠BCD=30°,∴CG=DG=,∴BC=CG+BG=+1,②当点C,D在直线MN两侧时,如图2﹣1,过点D作DG⊥CB交CB的延长线于G,同①的方法得,BG=1,CG=,∴BC=CG﹣BG=﹣1即:BC=或,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.19、(1),顶点坐标(1,-4);(2)m=1;(3)①当a>0时,y2>y1,②当a<0时,y1>y2.【解析】试题分析:(1)把a=2,b=4代入并配方,即可求出此时二次函数图象的顶点坐标;(2)由题意把(m,t)和(-m,-t)代入(1)中所得函数的解析式,解方程组即可求得m的值;(3)把点(1,0)代入可得b=a-2,由此可得抛物线的对称轴为直线:,再分a>0和a<0两种情况分别讨论即可y1和y2的大小关系了.试题解析:(1)把a=2,b=4代入得:,∴此时二次函数的图象的顶点坐标为(1,-4);(2)由题意,把(m,t)和(-m,-t)代入得:①,②,由①+②得:,解得:;(3)把点(1,0)代入得a-b-2=0,∴b=a-2,∴此时该二次函数图象的对称轴为直线:,①当a>0时,,,∵此时,且抛物线开口向上,∴中,点B距离对称轴更远,∴y1<y2;②当a<0时,,,∵此时,且抛物线开口向下,∴中,点B距离对称轴更远,∴y1>y2;综上所述,当a>0时,y1<y2;当a<0时,y1>y2.点睛:在抛物线上:(1)当抛物线开口向上时,抛物线上的点到对称轴的距离越远,所对应的函数值就越大;(2)当抛物线开口向下时,抛物线上的点到对称轴的距离越近,所对应的函数值就越大;20、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】
(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【详解】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F(如下图),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①当OC与CD是对应边时,∵△DOC∽△PDC,∴,即=,解得DP=,过点P作PG⊥y轴于点G,则,即,解得DG=1,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,﹣2);②当OC与DP是对应边时,∵△DOC∽△CDP,∴,即=,解得DP=3,过点P作PG⊥y轴于点G,则,即,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.21、(1)①30°②见解析(2)BD2+CE2=DE2(3)【解析】
(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.【详解】解:(1)①由旋转得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋转知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根据勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 规划设计策划管理制度汇编
- 广西房屋建筑和市政工程勘察招标文件范本(2020年试行版)
- 力争上游2025年国际金融理财师考试试题及答案
- 微生物检验技师证书考试冲刺试题演练
- 滚动练1~60参考答案
- 项目可行性分析考题解读试题及答案
- 发掘潜能的2025年证券从业资格试题及答案
- 微生物培养与鉴定过程试题及答案
- 解析注册会计师考试重点试题及答案
- 项目沟通技巧考核试题及答案
- 新款h2夜视移动电源
- 天津大学年《岩体力学》期末试题及答案
- 成果报告书(模板)
- 牛腿计算表(自动版)
- 供料机工作原理与使用
- 口腔科学第七章口腔局部麻醉备课讲稿课件
- 普通话朗读技巧语调
- CPK计算表格EXCEL格式-自动套用自动计算分析
- 重庆市国家职业资格鉴定申报表(三、四、五级) - 重庆市职业技能鉴定
- 代付款协议(中英文对照版本)
- 半钢子午胎培训
评论
0/150
提交评论