




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省桂阳县2025届数学九上期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列事件是随机事件的是()A.画一个三角形,其内角和是 B.射击运动员射击一次,命中靶心C.投掷一枚正六面体骰子,朝上一面的点数小于 D.在只装了红球的不透明袋子里,摸出黑球2.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=3.如图,中,,,,则的长为()A. B. C.5 D.4.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来谷米1534石,验得其中夹有谷粒.现从中抽取谷米一把,共数得254粒,其中夹有谷粒28粒,则这批谷米内夹有谷粒约是()A.134石 B.169石 C.338石 D.1365石5.已知反比例函数y=的图象如图所示,则二次函数y=ax2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A. B. C. D.6.如图,正比例函数y1=k1x和反比例函数的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是()A.x<﹣1或x>1 B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>17.⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定8.下列事件中是必然事件的是()A.打开电视正在播新闻B.随机抛掷一枚质地均匀的硬币,落地后正面朝上C.在等式两边同时除以同一个数(或式子),结果仍相等D.平移后的图形与原图形中的对应线段相等9.中,,,,的值为()A. B. C. D.210.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为()A.; B.; C.; D.;11.下列事件中,是必然事件的是()A.明天太阳从西边出来 B.打开电视,正在播放《新闻联播》C.兰州是甘肃的省会 D.小明跑完所用的时间为分钟12.下列方程是一元二次方程的是()A. B.x2+5=0 C.x2+=8 D.x(x+3)=x2﹣1二、填空题(每题4分,共24分)13.如图,平行四边形分别切于点,连接并延长交于点,连接与刚好平行,若,则的直径为______.14.已知,则__________.15.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中x与y的部分对应值如下表x-1013y-1353那么当x=4时,y的值为___________.16.如图,已知AB是⊙O的直径,弦CD与AB相交,若∠BCD=24°,则∠ABD的度数为___度.17.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为______________.18.如图,双曲线经过斜边的中点,与直角边交于点.过点作于点,连接,则的面积是__________.三、解答题(共78分)19.(8分)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.20.(8分)如图,为的直径,、为上两点,,,垂足为.直线交的延长线于点,连接.(1)判断与的位置关系,并说明理由;(2)求证:.21.(8分)如图,已知AD•AC=AB•AE.求证:△ADE∽△ABC.22.(10分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,(1)画出关于轴对称的,并写出点的坐标;(2)画出绕原点顺时针方向旋转后得到的,并写出点的坐标;(3)将平移得到,使点的对应点是,点的对应点时,点的对应点是,在坐标系中画出,并写出点,的坐标.23.(10分)如图,一次函数的图象和反比例函数的图象相交于两点.(1)试确定一次函数与反比例函数的解析式;(2)求的面积;(3)结合图象,直接写出使成立的的取值范围.24.(10分)(1)(教材呈现)下图是华师版九年级上册数学教材第77页的部分内容.请根据教材提示,结合图23.4.2,写出完整的证明过程.(2)(结论应用)如图,△ABC是等边三角形,点D在边AB上(点D与点A、B不重合),过点D作DE∥BC交AC于点E,连结BE,M、N、P分别为DE、BE、BC的中点,顺次连结M、N、P.①求证:MN=PN;②∠MNP的大小是.25.(12分)如图,为外接圆的直径,点是线段延长线上一点,点在圆上且满足,连接,,,交于点.(1)求证:.(2)过点作,垂足为,,,求证:.26.综合与探究如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求的值;(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、画一个三角形,其内角和是360°是不可能事件,故本选项错误;
B、射击运动员射击一次,命中靶心是随机事件,故本选项正确;
C、投掷一枚正六面体骰子,朝上一面的点数小于7是必然事件,故本选项错误;
D、在只装了红球的不透明袋子里,摸出黑球是不可能事件,故本选项错误.
故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【解析】试题分析:根据行程问题的公式路程=速度×时间,可知汽车行驶的时间t关于行驶速度v的函数关系式为t=.考点:函数关系式3、C【解析】过C作CD⊥AB于D,根据含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【详解】过C作CD⊥AB于D,则∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故选C.【点睛】本题考查解直角三角形.4、B【解析】根据254粒内夹谷28粒,可得比例,再乘以1534石,即可得出答案.【详解】解:根据题意得:1534×≈169(石),答:这批谷米内夹有谷粒约169石;故选B.【点睛】本题考查了用样本估计总体,用样本估计总体是统计的基本思想,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.5、C【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.6、D【解析】反比例函数与一次函数的交点问题.根据图象找出直线在双曲线下方的x的取值范围:由图象可得,﹣1<x<0或x>1时,y1<y1.故选D.7、A【解析】∵圆心O到直线l的距离d=3,⊙O的半径R=4,则d<R,∴直线和圆相交.故选A.8、D【分析】根据事件发生的可能性大小判断相应事件,从而可得答案.【详解】解:A、打开电视正在播新闻是随机事件;B、随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件;C、在等式两边同时除以同一个数(或式子),结果仍相等是随机事件;D、平移后的图形与原图形中的对应线段相等是必然事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、C【分析】根据勾股定理求出斜边AB的值,在利用余弦的定义直接计算即可.【详解】在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB=,∴==,故选:C.【点睛】本题主要考查锐角三角函数的定义,解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数是定义.10、A【分析】根据余角的性质,可得∠BCD=∠A,根据等角的正切相等,可得答案.【详解】由∠ACB=90°,CD⊥AB于D,得
∠BCD=∠A
tan∠BCD=tan∠A=,
故选A.【点睛】此题考查锐角三角函数的定义,利用余角的性质得出∠BCD=∠A是解题关键.11、C【分析】由题意根据必然事件就是一定发生的事件,依据定义依次判断即可.【详解】解:A.明天太阳从西边出来,为不可能事件,此选项排除;B.打开电视,正在播放《新闻联播》,为不一定事件,此选项排除;C.兰州是甘肃的省会,为必然事件,此选项当选;D.小明跑完所用的时间为分钟,为不一定事件,此选项排除.故选:C.【点睛】本题考查必然事件的概念.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、B【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【详解】A、方程x+2y=1是二元一次方程,故本选项错误;B、方程x2+5=0是一元二次方程,故本选项正确;C、方程x2+=8是分式方程,故本选项错误;D、方程x(x+3)=x2-1是一元一次方程,故本选项错误.故选B.【点睛】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.二、填空题(每题4分,共24分)13、【分析】先证得四边形AGCH是平行四边形,则,再证得,求得,证得DO⊥HC,根据,即可求得半径,从而求得结论.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥HC,∴四边形AGCH是平行四边形,∴,∵是⊙O的切线,且切点为、,∴,∠GCH=∠HCD,∵AD∥BC,∴∠DHC=∠GCH,∴∠DHC=∠HCD,∴三角形DHC为等腰三角形,∴,∴,∴,,连接OD、OE,如图,∵是⊙O的切线,且切点为、,∴DO是∠FDE的平分线,又∵,∴DO⊥HC,∴∠DOC=90,∵切⊙O于,∴OE⊥CD,∵∠OCE+∠COE=90,∠DOE+∠COE=90,∴∠OCE=∠DOE,∴,∴,即,∴,∴⊙O的直径为:故答案为:.【点睛】本题考查了平行四边形的判定和性质,切线长定理,相似三角形的判定和性质,等腰三角形的判定和性质,证得为等腰三角形是解题的关键.14、【分析】根据比例的性质,由得,x=,再将其代入所求式子可得出结果.【详解】解:由得,x=,所以.故答案为:.【点睛】此题考查了比例的性质,熟练掌握比例的性质是解题的关键,较简单.15、-1【分析】将表中数值选其中三组代入解析式得方程组,解方程组得到函数解析式,再把x=4代入求值即可.【详解】解:将表中数值选其中三组代入解析式得:解得:所以解析式为:当x=4时,故答案为:-1【点睛】本题考查了待定系数法求二次函数的解析式,根据表中数据求出二次函数解析式是解题的关键.16、66【解析】连接AD,根据圆周角定理可求∠ADB=90°,由同弧所对圆周角相等可得∠DCB=∠DAB,即可求∠ABD的度数.【详解】解:连接AD,∵AB是直径,∴∠ADB=90°,∵∠BCD=24°,∴∠BAD=∠BCD=24°,∴∠ABD=66°,故答案为:66【点睛】本题考查了圆周角定理,根据圆周角定理可求∠ADB=90°是本题的关键.17、x1=-1,x2=1【分析】根据抛物线的轴对称性以及对称轴的位置,可得抛物线与x轴的另一个交点的横坐标,进而即可求解.【详解】∵二次函数的部分图象与x轴的交点的横坐标为1,对称轴为:直线x=1,∴抛物线与x轴的另一个交点的横坐标为-1,∴的解为:x1=-1,x2=1.故答案是:x1=-1,x2=1.【点睛】本题主要考查二次函数图象的轴对称性以及二次函数与一元二次方程的关系,根据抛物线的轴对称性,得到抛物线与x轴另一个交点的横坐标,是解题的关键.18、1【分析】先证明△OED∽△OAB,得出相似比=,再根据反比例函数中k的几何意义得出S△AOC=S△DOE=×2=1,从而可得出△AOB的面积,最后由S△OBC=S△AOB-S△AOC可得出结果.【详解】解:∵∠OAB=90°,DE⊥OA,
∴DE∥AB,∴△OED∽△OAB,
∵D为OB的中点D,,∴.∵双曲线的解析式是y=,
∴S△AOC=S△DOE=×2=1,
∴S△AOB=4S△DOE=4,
∴S△OBC=S△AOB-S△AOC=1,
故答案为:1.【点睛】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点.三、解答题(共78分)19、(1)抛物线的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值为;(3)存在点P(1,6).【分析】(1)根据待定系数法,可得函数解析式;(2)根据对称性,可得MC=MD,根据解方程组,可得B点坐标,根据两边之差小于第三边,可得B,C,M共线,根据勾股定理,可得答案;(3)根据等腰直角三角形的判定,可得∠BCE,∠ACO,根据相似三角形的判定与性质,可得关于x的方程,根据解方程,可得x,根据自变量与函数值的对应关系,可得答案.【详解】解:(1)将A(0,3),C(﹣3,0)代入函数解析式,得,解得,抛物线的解析式是y=x2+x+3;(2)由抛物线的对称性可知,点D与点C关于对称轴对称,∴对l上任意一点有MD=MC,联立方程组,解得(不符合题意,舍),,∴B(﹣4,1),当点B,C,M共线时,|MB﹣MD|取最大值,即为BC的长,过点B作BE⊥x轴于点E,,在Rt△BEC中,由勾股定理,得BC=,|MB﹣MD|取最大值为;(3)存在点P使得以A,P,Q为顶点的三角形与△ABC相似,在Rt△BEC中,∵BE=CE=1,∴∠BCE=45°,在Rt△ACO中,∵AO=CO=3,∴∠ACO=45°,∴∠ACB=180°﹣45°﹣45°=90°,过点P作PG⊥y轴于G点,∠PGA=90°,设P点坐标为(x,x2+x+3)(x>0)①当∠PAQ=∠BAC时,△PAQ∽△CAB,∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,∴△PGA∽△BCA,∴,即,∴,解得x1=1,x2=0(舍去),∴P点的纵坐标为×12+×1+3=6,∴P(1,6),②当∠PAQ=∠ABC时,△PAQ∽△CBA,∵∠PGA=∠ACB=90°,∠PAQ=∠ABC,∴△PGA∽△ACB,∴,即=3,∴,解得x1=﹣(舍去),x2=0(舍去)∴此时无符合条件的点P,综上所述,存在点P(1,6).【点睛】本题考查了二次函数综合题,解(1)的关键是利用待定系数法求函数解析式;解(2)的关键是利用两边只差小于第三边得出M,B,C共线;解(3)的关键是利用相似三角形的判定与性质得出关于x的方程,要分类讨论,以防遗漏.20、(1)EF与⊙O相切,理由见解析;(2)证明见解析.【分析】(1)连接OC,由题意可得∠OCA=∠FAC=∠OAC,可得OC∥AF,可得OC⊥EF,即EF是⊙O的切线;(2)连接BC,根据直径所对圆周角是直角证得△ACF∽△ABC,即可证得结论.【详解】(1)EF与⊙O相切,理由如下:如图,连接OC,∵,∴∠FAC=∠BAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AF,又∵EF⊥AF,∴OC⊥EF,∴EF是⊙O的切线;(2)连接BC,∵AB为直径,∴∠BCA=90°,又∵∠FAC=∠BAC,∴△ACF∽△ABC,∴,∴.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,相似三角形的判定和性质,熟练运用切线的判定和性质是本题的关键.21、证明见解析.【分析】由AD•AC=AE•AB,可得,从而根据“两边对应成比例并且夹角相等的两个三角形相似”可证明结论成立.【详解】试题分析:证明:∵AD•AC=AE•AB,∴=在△ABC与△ADE中∵=,∠A=∠A,∴△ABC∽△ADE22、(1)图详见解析,;(2)图详见解析,;(3)图详见解析,【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)让三角形的各顶点都绕点O顺时针旋转90°后得到对应点,顺次连接即可;(3)将平移得到,使点的对应点是,点的对应点是,点的对应点是(4,−1),在坐标系中画出,并写出点,的坐标;【详解】解:(1)(2)(3)如图所示:(1)根据图形结合坐标系可得:;(2)根据图形结合坐标系可得:点(3,1);(3)根据图形结合坐标系可得:,;【点睛】本题主要考查了作图-旋转变换,作图-轴对称变换,掌握作图-旋转变换,作图-轴对称变换是解题的关键.23、(1)反比例函数的解析式为,一次函数的解析式为;(2)8;(3)或.【分析】(1)将点A代入反比例函数中求出反比例函数的解析式,再根据反比例函数求出点B的坐标,最后将A和B的坐标代入一次函数解析式中求出一次函数的解析式;(2)求出一次函数与x轴的交点坐标,再利用割补法得到,即可得出答案;(3)根据图像判断即可得出答案.【详解】解:(1)∵在反比例函数的图象上,∴,则反比例函数的解析式为.将代入,得,∴.将两点的坐标分别代入,得解得则一次函数的解析式为.(2)设一次函数的图象与轴的交点为.在中,令,得,∴,即,则.(3)∵即一次函数的图像在反比例函数的图像的上方∴或.【点睛】本题考查的是一次函数与反比例函数的综合,难度不高,需要熟练掌握一次函数与反比例函数的图像与性质.24、(1)见详解;(2)①见详解;②120°【分析】教材呈现:证明△ADE∽△ABC即可解决问题.结论应用:(1)首先证明△ADE是等边三角形,推出AD=AE,BD=CE,再利用三角形的中位线定理即可证明.(2)利用三角形的中位线定理以及平行线的性质解决问题即可.【详解】教材呈现:证明:∵点D,E分别是AB,AC的中点,∴,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,,∴DE∥BC,DE=BC.结论应用:(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵DE∥AB,∴∠ABC=∠ADE=60°,∠ACB=∠AED=60°,∴∠ADE=∠AED=60°,∴△ADE是等边三角形,∴AD=AE,∴BD=CE,∵EM=MD,EN=NB,∴MN=BD,∵BN=NE,BP=PC,∴PN=EC,∴NM=NP.(2)∵EM=MD,EN=NB,∴MN∥BD,∵BN=NE,BP=PC,∴PN∥EC,∴∠MNE∠ABE,∠PNE=∠AEB,∵∠AEB=∠EBC+∠C,∠ABC=∠C=60°,∴∠MNP=∠ABE+∠EBC+∠C=∠ABC+∠C=120°.【点睛】本题考查了三角形中位线定理,,平行线的性质、相似三角形的判定与性质,综合性较强,难度适中.熟练掌握各定理是解题的关键.25、(1)见解析;(2)见解析.【分析】(1)利用两边对应成比例,夹角相等,两三角形相似即可;(2)构造全等三角形,先找出OD与PA的关系,再用等积式找出PE与PA的关系,从而判断出OM=PE,得出△ODM≌△PDE即可.【详解】(1)证明:∵,∴,∵,∴.(2)证明:连接,∴,∵,∴,∵,∴,∴,为直径,∴,∴,∵,∴,设圆半径为,在中,∵,∴,,∵,∴,∴,又为中点,∴,,∵,∴,又,,∴,∴.【点睛】此题是圆的综合题,主
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 6516-2025电解镍
- GB/T 45498.3-2025中华人民共和国社会保障卡一卡通规范第3部分:安全规范
- 合作项目股份合同分配协议
- 强化项目管理考试分析能力的方案试题及答案
- 【核心素养】部编版初中语文八年级上册16《 散文二篇》 教案+导学案(师生版)+同步测试(含答案)
- 委托代理记账合同协议
- 特许金融分析师考试学习策略试题及答案
- 特许金融分析师考试解答技巧分享试题及答案
- 项目评审指标的选定与分析试题及答案
- 锦囊妙计应对证券从业资格证的试题及答案
- GB/T 44744-2024粮食储藏低温储粮技术规程
- 加工制作合同(储存罐)
- DB11T 594.2-2014 地下管线非开挖铺设工程施工及验收技术规程第2部分 顶管施工
- DB11∕T 1832.17-2021 建筑工程施工工艺规程 第17部分:电气动力安装工程
- 出租屋转租补充协议书范文范本
- 2024年2个居间人内部合作协议书模板
- 【企业盈利能力探析的国内外文献综述2400字】
- 两位数加一位数和整十数(不进位) 1000题
- 《2008辽宁省建设工程计价依据执行标准》大建委发200875号
- TSDLPA 0001-2024 研究型病房建设和配置标准
- 2023年宿迁市洋河新区“返乡兴村”新村干招聘考试真题
评论
0/150
提交评论