版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省红河市2025届数学九上期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图所示的几何体的俯视图是()A. B. C. D.2.下列方程中,关于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.3.方程变为的形式,正确的是()A. B.C. D.4.如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=35°,则∠C的度数为()A.70° B.65° C.55° D.45°5.如图是一个几何体的三视图,这个几何体是().A.三棱锥 B.三棱柱 C.长方体 D.圆柱体6.若△ABC∽△DEF,相似比为2:3,则对应面积的比为()A.3:2 B.3:5 C.9:4 D.4:97.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5) B.黑(3,2),白(3,3)C.黑(3,3),白(3,1) D.黑(3,1),白(3,3)8.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A. B.2 C.5 D.109.下列四组、、的线段中,不能组成直角三角形的是()A.,, B.,,C.,, D.,,10.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A. B. C. D.二、填空题(每小题3分,共24分)11.若=,则的值是_________.12.若式子在实数范围内有意义,则的取值范围是________.13.已知函数(为常数),若从中任取值,则得到的函数是具有性质“随增加而减小”的一次函数的概率为___________.14.瑞士中学教师巴尔末成功的从光谱数据:,……中得到巴尔末公式,从而打开光谱奥妙的大门.请你根据以上光谱数据的规律写出它的第七个数据___.15.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.16.一元二次方程的一个根为,另一个根为_____.17.方程2x2﹣6=0的解是_____.18.如图,,,则的度数是__________.三、解答题(共66分)19.(10分)已知y是x的反比例函数,且当时,.(1)求y关于x的函数解析式;(2)当时,求y的值.20.(6分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD,DE.(1)求证:D是BC的中点(2)若DE=3,AD=1,求⊙O的半径.21.(6分)在一个不透明的布袋里装有个标号分别为的小球,这些球除标号外无其它差别.从布袋里随机取出一个小球,记下标号为,再从剩下的个小球中随机取出一个小球,记下标号为记点的坐标为.(1)请用画树形图或列表的方法写出点所有可能的坐标;(2)求两次取出的小球标号之和大于的概率;(3)求点落在直线上的概率.22.(8分)如图,已知抛物线C1交直线y=3于点A(﹣4,3),B(﹣1,3),交y轴于点C(0,6).(1)求C1的解析式.(2)求抛物线C1关于直线y=3的对称抛物线的解析式;设C2交x轴于点D和点E(点D在点E的左边),求点D和点E的坐标.(3)将抛物线C1水平向右平移得到抛物线C3,记平移后点B的对应点B′,若DB平分∠BDE,求抛物线C3的解析式.(4)直接写出抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式.23.(8分)如图,在中,于,,,,分别是,的中点.(1)求证:,;(2)连接,若,求的长.24.(8分)教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶次,每次射靶的成绩情况如图所示.甲射靶成绩的条形统计图乙射靶成绩的折线统计图()请你根据图中的数据填写下表:平均数众数方差甲__________乙____________________()根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.25.(10分)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?26.(10分)为测量某特种车辆的性能,研究制定了行驶指数,而的大小与平均速度和行驶路程有关(不考虑其他因素),由两部分的和组成,一部分与成正比,另一部分与成正比.在实验中得到了表格中的数据:速度路程指数(1)用含和的式子表示;(2)当行驶指数为,而行驶路程为时,求平均速度的值;(3)当行驶路程为时,若行驶指数值最大,求平均速度的值.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.2、C【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.3、B【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2﹣2x=3,配方得:x2﹣2x+1=1,即(x﹣1)2=1.故选B.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法的步骤是解答本题的关键.4、C【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,
∴∠C=∠O=55°.
故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.5、B【解析】试题解析:根据三视图的知识,主视图为三角形,左视图为一个矩形,俯视图为两个矩形,故这个几何体为三棱柱.故选B.6、D【解析】根据相似三角形的面积比等于相似比的平方解答.【详解】解:∵△ABC∽△DEF,相似比为2:3,∴对应面积的比为()2=,故选:D.【点睛】本题考查相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.7、D【分析】利用轴对称图形以及中心对称图形的性质即可解答.【详解】如图所示:黑(3,1),白(3,3).故选D.【点睛】此题主要考查了旋转变换以及轴对称变换,正确把握图形的性质是解题关键.8、C【解析】分析:根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.详解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD=,∴AO=3,在Rt△AOB中,由勾股定理得:AB==5,故选C.点睛:本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9、B【分析】根据勾股定理的逆定理判断三角形三边是否构成直角三角形,依次计算判断得出结论.【详解】A.∵,,∴,A选项不符合题意.B.∵,,∴,B选项符合题意.C.∵,,∴,C选项不符合题意.D.∵,∴,D选项不符合题意.故选:B.【点睛】本题考查三角形三边能否构成直角三角形,熟练逆用勾股定理是解题关键.10、B【解析】试题分析:∵函数y=x2的图象的顶点坐标为,将函数y=x2的图象向右平移2个单位,再向上平移3个单位,∴其顶点也向右平移2个单位,再向上平移3个单位.根据根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.∴平移后,新图象的顶点坐标是.∴所得抛物线的表达式为.故选B.考点:二次函数图象与平移变换.二、填空题(每小题3分,共24分)11、.【分析】根据等式的性质,可用a表示b,根据分式的性质可得答案.【详解】解:由=得,b=a,∴,故答案为:.【点睛】本题考查了比例的性质,利用等式的性质得出b=a是解题的关键,又利用了分式的性质.12、且【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得x-1≥0且x-2≠0,解得且故答案为:且【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.13、【分析】根据“随增加而减小”可知,解出k的取值范围,然后根据概率公式求解即可.【详解】由“随增加而减小”得,解得,∴具有性质“随增加而减小”的一次函数的概率为故答案为:.【点睛】本题考查了一次函数的增减性,以及概率的计算,熟练掌握一次函数增减性与系数的关系和概率公式是解题的关键.14、【分析】分子的规律依次是,32,42,52,62,72,82,92…,分母的规律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七个数据是.【详解】解:由数据可得规律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七个数据是.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.15、(0,0)【解析】根据坐标的平移规律解答即可.【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16、【分析】利用因式分解法解得方程的两个根,即可得出另一个根的值.【详解】,变形为:,∴或,解得:;,∴一元二次方程的另一个根为:.故答案为:.【点睛】本题考查了解一元二次方程-因式分解法.17、x1=,x2=﹣【解析】此题通过移项,然后利用直接开平方法解方程即可.【详解】方程2x2﹣6=0,即x2=3,开方得:x=±,解得:x1=,x2=﹣,故答案为:x1=,x2=﹣【点睛】此题主要考查了一元二次方程的解法—直接开平方法,比较简单.18、【分析】根据三角形外角定理求解即可.【详解】∵,且∴故填:.【点睛】本题主要考查三角形外角定理,熟练掌握定理是关键.三、解答题(共66分)19、(1)y=;(2)-1【分析】(1)直接利用待定系数法求出反比例函数解析式即可;
(2)直接利用x=1代入求出答案.【详解】解:(1)∵y是x的反比例函数,∴设y=,当x=-2时,y=8,∴k=(-2)×8=-16,∴y=;(2)当x=1时,代入,y=-16÷1=-1.【点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键.20、(1)证明见解析;(2)【分析】(1)根据圆周角定理、等腰三角形的三线合一的性质即可证得结论;(2)根据圆周角定理及等腰三角形的判定得到DE=BD=3,再根据勾股定理求出AB,即可得到半径的长.【详解】(1)∵AB是⊙O直径∴∠ADB=90°,在△ABC中,AB=AC,∴DB=DC,即点D是BC的中点;(2)∵AB=AC,∴∠B=∠C,又∠B=∠E,∴∠C=∠E,∴DE=DC,∵DC=BD,∴DE=BD=3,∵AD=1,又∠ADB=90°,∴AB=,∴⊙O的半径=.【点睛】此题考查圆周角定理,等腰三角形的三线合一的性质及等角对等边的判定,勾股定理.21、(1)见解析;(2)(3).【分析】(1)根据题意直接画出树状图即可(2)根据(1)所画树状图分析即可得解(3)若使点落在直线上,则有x+y=5,结合树状图计算即可.【详解】解:(1)画树状图得:共有种等可能的结果数;(2)共有种等可能的结果数,其中两次取出的小球标号之和大于的有种,两次取出的小球标号之和大于的概率是;(3)点落在直线上的情况共有4种,点落在直线上的概率是.【点睛】本题考查的知识点是求简单事件的概率问题,根据题目画出树状图,数形结合,可以使题目简单明了,更容易得到答案.22、(1)C1的解析式为y=x2+x+1;(2)抛物线C2的解析式为y=﹣x2﹣x,D(﹣5,0),E(0,0);(3)抛物线C3的解析式为y=;(4)y=x2x+2n﹣1.【分析】(1)设抛物线C1经的解析式为y=ax2+bx+c,将点A、B、C的坐标代入求解即可得到解析式;(2)先求出点C关于直线y=3的对称点的坐标为(0,0),设抛物线C2的解析式为y=a1x2+b1x+c1,即可求出答案;(3)如图,根据平行线的性质及角平分线的性质得到BB′=DB,利用勾股定理求出DB的长度即可得到抛物线平移的距离,由此得到平移后的解析式;(4)设抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式为y=mx+nx+k,根据对称性得到m、n的值,再利用对称性得到新函数与y轴交点坐标得到k的值,由此得到函数解析式.【详解】(1)设抛物线C1经的解析式为y=ax2+bx+c,∵抛物线C1经过点A(﹣4,3),B(﹣1,3),C(0,1).∴,解得,∴C1的解析式为y=x2+x+1;(2)∵C点关于直线y=3的对称点为(0,0),设抛物线C2的解析式为y=a1x2+b1x+c1,∴,解得,∴抛物线C2的解析式为y=﹣x2﹣x;令y=0,则﹣x2﹣x=0,解得x1=0,x2=﹣5,∴D(﹣5,0),E(0,0);(3)如图,∵DB′平分∠BDE,∴∠BDB′=∠ODB′,∵AB∥x轴,∴∠BB′D=∠ODB′,∴∠BDB′=∠BB′D,∴BB′=DB,∵BD==5,∴将抛物线C1水平向右平移5个单位得到抛物线C3,∵C1的解析式为y=x2+x+1=(x+)2+,∴抛物线C3的解析式为y=(x+﹣5)2+=;(4)设抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式为y=mx+nx+k,根据对称性得:新抛物线的开口方向与原抛物线的开口方向相反,开口大小相同,故m=-,对称轴没有变化,故n=-,当n>1时,n+(n-1)=2n-1,故新抛物线与y轴的交点为(0,2n-1),当n<1时,n-(1-n)=2n-1,新抛物线与y轴的交点为(0,2n-1),∴k=2n-1,∴抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式为:y=﹣x2﹣x+2n﹣1.【点睛】此题考查待定系数法求抛物线的解析式,抛物线的对称性,抛物线平移的性质,解题中确定变化后的抛物线的特殊点的坐标是解题的关键.23、(1)证明见解析;(2)EF=5.【解析】试题分析:(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.试题解析:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.24、(1)【答题空1】66(2)利用见解析.【分析】(1)先求出甲射击成绩的平均数,通过观察可得到乙的众数,再根据乙的平均数结合方差公式求出乙射击成绩的方差即可;(2)根据平均数和方差的意义,即可得出结果.【详解】解:(),乙的众数为6,.()因为甲、乙的平均数与众数都相同,甲的方差小,所以更稳定,因此甲的成绩好些.【点睛】本题考查了平均数、众数、方差的意义等,解题的关键是要熟记公式,在进行选拔时要结合方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.25、(1)该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.(2)2019年该贫困户的家庭年人均纯收入能达到4200元.【分析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 送别 作文课件
- 第11课《短文二篇·记承天寺夜游》八年级语文上册精讲同步课堂(统编版)
- 西南林业大学《材料科学基础》2021-2022学年第一学期期末试卷
- 西京学院《文案创意与写作》2022-2023学年第一学期期末试卷
- 西京学院《模式识别技术》2021-2022学年期末试卷
- 西京学院《结构力学》2022-2023学年第一学期期末试卷
- 西华师范大学《舞台实践与服务》2022-2023学年第一学期期末试卷
- 2024-2025学年高中物理举一反三系列专题4.5 氢原子光谱和玻尔的原子模型(含答案)
- 西华师范大学《教师礼仪》2021-2022学年第一学期期末试卷
- 西华师范大学《当代中国政治制度》2022-2023学年第一学期期末试卷
- 夏季反季节施工方案绿化
- 专业技术人员网络安全知识提升
- 上期开特下期出特公式
- 中国药科大药大动力学重点总结
- 高中生物必修一学考知识总结
- 火力发电厂设计技术规程(热控部分)
- 中医师承学员报名申请表
- MSDS(T-35)DBE溶剂
- DFMEA模板(完整版)
- 实验室6S管理实施细则
- 学习解读2021年《全民科学素质行动规划纲要(2021—2035年)》PPT演示课件
评论
0/150
提交评论