版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省剑门关高级中学2025届高一数学第二学期期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,且,则()A. B.7 C. D.2.直线的倾斜角的取值范围是()A. B. C. D.3.下列函数中,既不是奇函数也不是偶函数的是()A. B. C. D.4.已知数列{an}满足a1=2A.2 B.-3 C.-125.已知函数的最大值为,最小值为,则的值为()A. B. C. D.6.在ΔABC中,内角A,B,C的对边分别为a,b,c.若3asinC=A.π6 B.π3 C.2π7.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①;②;③;④.其中“同簇函数”的是()A.①②B.①④C.②③D.③④8.设、满足约束条件,则的最大值为()A. B.C. D.9.下列命题中正确的是()A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过一条直线有且只有一个平面与已知平面垂直C.如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面D.如果两条直线都垂直于同一平面,那么这两条直线共面10.已知为等差数列的前项和,,,则()A.2019 B.1010 C.2018 D.1011二、填空题:本大题共6小题,每小题5分,共30分。11.英国物理学家和数学家艾萨克·牛顿(Isaacnewton,1643-1727年)曾提出了物体在常温环境下温度变化的冷却模型.现把一杯温水放在空气中冷却,假设这杯水从开始冷却,x分钟后物体的温度满足:(其中…为自然对数的底数).则从开始冷却,经过5分钟时间这杯水的温度是________(单位:℃).12.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率为________.13.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若,则=___________.14.如图,在正方体中,点是线段上的动点,则直线与平面所成的最大角的余弦值为________.15.若、为单位向量,且,则向量、的夹角为_______.(用反三角函数值表示)16.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出人.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,.(1)若,求实数的值;(2)若,求向量与的夹角.18.已知菱形ABCD的边长为2,M为BD上靠近D的三等分点,且线段.(1)求的值;(2)点P为对角线BD上的任意一点,求的最小值.19.已知函数,是公差为的等差数列,是公比为的等比数列.且,,,.(1)分别求数列、的通项公式;(2)已知数列满足:,求数列的通项公式.20.某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.组号分组频数频率第1组5第2组①第3组30②第4组20第5组10(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.21.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由平方关系求得,再由商数关系求得,最后由两角和的正切公式可计算.【详解】,,,,.故选:D.【点睛】本题考查两角和的正切公式,考查同角间的三角函数关系.属于基础题.2、B【解析】
由直线的方程可确定直线的斜率,可得其范围,进而可求倾斜角的取值范围.【详解】解:直线的斜率为,,根据正切函数的性质可得倾斜角的取值范围是故选:.【点睛】本题考查直线的斜率与倾斜角的关系,属于基础题.3、D【解析】
利用奇函数偶函数的判定方法逐一判断得解.【详解】A.函数的定义域为R,关于原点对称,,所以函数是偶函数;B.函数的定义域为,关于原点对称.,所以函数是奇函数;C.函数的定义域为R,关于原点对称,,所以函数是偶函数;D.函数的定义域为R,关于原点对称,,,所以函数既不是奇函数,也不是偶函数.故选D【点睛】本题主要考查函数的奇偶性的判断,意在考查学生对该知识的理解掌握水平,属于基础题.4、D【解析】
先通过列举找到数列的周期,再利用数列的周期求值.【详解】由题得a2所以数列的周期为4,所以a2020故选:D【点睛】本题主要考查递推数列和数列的周期,意在考查学生对这些知识的理解掌握水平,属于基础题.5、B【解析】由解得为函数的定义域.令,消去得,图像为椭圆的一部分,如下图所示.,即直线,由图可知,截距在点处取得最小值,在与椭圆相切的点处取得最大值.而,故最小值为.联立,消去得,其判别式为零,即,解得(负根舍去),即,故.【点睛】本题主要考查含有两个根号的函数怎样求最大值和最小值.先用换元法,将原函数改写成为一次函数的形式.然后利用和的关系,得到的可行域,本题中可行域为椭圆在第一象限的部分.然后利用,用截距的最大值和最小值来求函数的最大值和最小值.6、A【解析】
根据正弦定理asinA=csinC将题干等式化为3sinAsin【详解】∵3asinC=3ccosA,所以3sinAsin【点睛】本题考查运用正弦定理求三角形内角,属于基础题。7、C【解析】试题分析:对于①中的函数而言,,对于③中的函数而言,,由“同簇函数”的定义而知,互为“同簇函数”的若干个函数的振幅相等,将②中的函数向左平移个单位长度,得到的新函数解析式为,故选C.考点:1.新定义;2.三角函数图象变换8、C【解析】
作出不等式组所表示的可行域,平移直线,观察直线在轴上的截距最大时对应的最优解,再将最优解代入目标函数可得出结果.【详解】作出不等式组所表示的可行域如下图中的阴影部分区域表示:联立,得,可得点的坐标为.平移直线,当该直线经过可行域的顶点时,直线在轴上的截距最大,此时取最大值,即,故选:C.【点睛】本题考查简单线性规划问题,一般作出可行域,利用平移直线结合在坐标轴上的截距取最值来取得,考查数形结合思想的应用,属于中等题.9、D【解析】
利用定理及特例法逐一判断即可。【详解】解:如果两条直线都平行于同一个平面,那么这两条直线相交、平行或异面,故A不正确;过一条直线有且只有一个平面与已知平面垂直,不正确.反例:如果该直线本身就垂直于已知平面的话,那么可以找到无数个平面与已知平面垂直,故B不正确;如果这两条直线都在平面内且平行,那么这直线不平行于这个平面,故C不正确;如果两条直线都垂直于同一平面,则这两条直线平行,所以这两条直线共面,故D正确.故选:D.【点睛】本题主要考查了线线平行的判定,面面垂直的判定,线面平行的判定,线面垂直的性质,考查空间思维能力,属于中档题。10、A【解析】
利用基本元的思想,将已知条件转化为和的形式,列方程组,解方程组求得,进而求得的值.【详解】由于数列是等差数列,故,解得,故.故选:A.【点睛】本小题主要考查等差数列通项公式和前项和公式的基本量计算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、45【解析】
直接利用对数的运算性质计算即可,【详解】.故答案为:45.【点睛】本题考查对数的运算性质,考查计算能力,属于基础题.12、0.2【解析】从1,2,3,4,5中任意取两个不同的数共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)10种.其中和为5的有(1,4),(2,3)2种.由古典概型概率公式知所求概率为=.13、【解析】试题分析:因为和关于轴对称,所以,那么,(或),所以.【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若与的终边关于轴对称,则,若与的终边关于轴对称,则,若与的终边关于原点对称,则.14、【解析】
作的中心,可知平面,所以直线与平面所成角为,当在中点时,最大,求出即可。【详解】设正方体的边长为1,连接,由于为正方体,所以为正四面体,棱长为,为等边三角形,作的中心,连接,,由于为正四面体,为的中心,所以平面,所以为直线与平面所成角,则当在中点时,最大,当在中点时,由于为正四面体,棱长为,等边三角形,为的中心,所以,,所以直线与平面所成的最大角的余弦值为故直线与平面所成的最大角的余弦值为故答案为【点睛】本题考查线面所成角,解题的关键是确定当在中点时,最大,考查学生的空间想象能力以及计算能力。15、.【解析】
设向量、的夹角为,利用平面向量数量积的运算律与定义计算出的值,利用反三角函数可求出的值.【详解】设向量、的夹角为,由平面向量数量积的运算律与定义得,,,因此,向量、的夹角为,故答案为.【点睛】本题考查利用平面向量的数量积计算平面向量所成的夹角,解题的关键就是利用平面向量数量积的定义和运算律,考查运算求解能力,属于中等题.16、16【解析】试题分析:由频率分布直方图知,收入在1511--2111元之间的概率为1.1114×511=1.2,所以在[1511,2111)(元)月收入段应抽出81×1.2=16人。考点:频率分布直方图的应用;分层抽样。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由向量平行的坐标表示可构造方程求得结果;(2)利用向量夹角公式可求得,进而根据向量夹角的范围求得结果.【详解】(1),解得:(2)又【点睛】本题考查平面向量共线的坐标表示、向量夹角的求解问题;考查学生对于平面向量坐标运算、数量积运算掌握的熟练程度,属于基础应用问题.18、(1),(2)【解析】
(1)由结合,可求出,从而得到(2)建立直角坐标系,设,可得到,然后利用二次函数的知识求出最小值【详解】(1)如图,四边形ABCD为菱形,所以所以因为,所以可解得,所以所以是等边三角形,故(2)以A为原点,所在直线为x轴建立如图所示坐标系:则有,所以线段:设,则有,所以因为,所以当时取得最小值【点睛】本题考查平面向量数量积及其运算,涉及余弦定理,二次函数等基本知识,属于中档题.19、(1),;(2).【解析】
(1)根据题意分别列出关于、的方程,求出这两个量,然后分别求出数列、的首项,再利用等差数列和等比数列的通项公式可计算出数列、的通项公式;(2)令可得出的值,再令,由得出,两式相减可求出,于此得出数列的通项公式.【详解】(1)由题意得,,,解得,且,,,,,且,整理得,解得,,,由等比数列的通项公式可得;(2)由题意可知,对任意的,.当时,,;当时,由,可得,上述两式相减得,即,.不适合上式,因此,.【点睛】本题考查等差数列、等比数列通项公式的求解,以及利用作差法求数列通项,解题时要结合数列递推式的结构选择合适的方法求解,考查运算求解能力,属于中等题.20、(1)人,,直方图见解析;(2)人、人、人;(3).【解析】
(1)由频率分布直方图能求出第组的频数,第组的频率,从而完成频率分布直方图.(2)根据第组的频数计算频率,利用各层的比例,能求出第组分别抽取进入第二轮面试的人数.(3)设第组的位同学为,第组的位同学为,第组的位同学为,利用列举法能出所有基本事件及满足条件的基本事件的个数,利用古典概型求得概率.【详解】(1)①由题可知,第2组的频数为人,②第组的频率为,频率分布直方图如图所示,
(2)因为第组共有名学生,所以利用分层抽样在名学生中抽取名学生进入第二轮面试,每组抽取的人数分别为:第组:人,第组:人,第组:人,所以第组分别抽取人、人、人进入第二轮面试.(3)设第组的位同学为,第组的位同学为,第组的位同学为,则从这六位同学中抽取两位同学有种选法,分别为:,,,,,,,,,,,,,,,其中第组的位同学中至少有一位同学入选的有种,分别为:,,,∴第组至少有一名学生被考官面试的概率为.【点睛】本题考查频率分直方图、分层抽样的应用,考查概率的求法,考查数据处理能力、运算求解能力,是基础题.21、(1),;(2).【解析】
(1)由函数的图象经过点且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年嘉峪关小型客运从业资格证考试题答案
- 吉林师范大学《数字通信原理》2021-2022学年第一学期期末试卷
- 吉林师范大学《流体力学》2021-2022学年第一学期期末试卷
- 真石漆施工质量保障方案
- 吉林师范大学《传播学理论I》2021-2022学年第一学期期末试卷
- 汽车制造烟气排放处理方案
- 吉林大学《通信原理A》2021-2022学年第一学期期末试卷
- 2025年上海市安全员C3证(专职安全员-综合类)证模拟考试题库及答案
- 外墙渗水治理的长期方案
- 2024客房租用合同协议书
- 英语外贸业务经理岗位职责
- 宪法学知到章节答案智慧树2023年兰州理工大学
- 阅己+悦己+越己+-高中认识自我心理健康主题班会 高中 班会课件
- 注塑参数表完整版
- 土地违法行为及法律责任
- 供应商响应情况登记表
- 内镜室医疗质量评价体系与考核标准
- 特异体质学生登记表( 小学)
- 机械工程控制基础课后习题答案
- jgj113-2015建筑玻璃技术规范
- 金刚萨埵《百字明咒》梵文拼音标注
评论
0/150
提交评论