2025届安徽省合肥市庐江县数学高一下期末调研试题含解析_第1页
2025届安徽省合肥市庐江县数学高一下期末调研试题含解析_第2页
2025届安徽省合肥市庐江县数学高一下期末调研试题含解析_第3页
2025届安徽省合肥市庐江县数学高一下期末调研试题含解析_第4页
2025届安徽省合肥市庐江县数学高一下期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省合肥市庐江县数学高一下期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,则集合A. B. C. D.2.若对任意的正数a,b满足,则的最小值为A.6 B.8 C.12 D.243.定义运算为执行如图所示的程序框图输出的值,则式子的值是A.-1 B.C. D.4.已知数列{an}满足且,则的值是()A.-5 B.- C.5 D.5.如图是正方体的展开图,则在这个正方体中:①与平行;②与是异面直线;③与成60°角;④与垂直.以上四个命题中,正确命题的序号是A.①②③ B.②④ C.③④ D.②③④6.已知、都是单位向量,则下列结论正确的是()A. B. C. D.7.某船从处向东偏北方向航行千米后到达处,然后朝西偏南的方向航行6千米到达处,则处与处之间的距离为()A.千米 B.千米 C.3千米 D.6千米8.已知,,且,则()A.1 B.2 C.3 D.49.已知平面平面,直线平面,直线平面,,在下列说法中,①若,则;②若,则;③若,则.正确结论的序号为()A.①②③ B.①② C.①③ D.②③10.如图,向量,,,则向量可以表示为()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)的图象恒过定点P,则点P的坐标是____________.12.函数,的反函数为__________.13.已知直线l与圆C:交于A,B两点,,则满足条件的一条直线l的方程为______.14.三阶行列式中,元素4的代数余子式的值为________.15.如图,,分别为的中线和角平分线,点P是与的交点,若,,则的面积为______.16.已知,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列满足,;数列的前项和为,且(1)求数列和的通项公式;(2)若,求数列的前项和.18.(Ⅰ)已知直线过点且与直线垂直,求直线的方程;(Ⅱ)求与直线的距离为的直线方程.19.已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是.(1)求n的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记“”为事件A,求事件A的概率;②在区间内任取2个实数,求事件“恒成立”的概率.20.已知圆(1)求圆关于直线对称的圆的标准方程;(2)过点的直线被圆截得的弦长为8,求直线的方程;(3)当取何值时,直线与圆相交的弦长最短,并求出最短弦长.21.已知函数,其图象与轴相邻的两个交点的距离为.(1)求函数的解析式;(2)若将的图象向左平移个长度单位得到函数的图象恰好经过点,求当取得最小值时,在上的单调区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

直接利用集合补集的定义求解即可.【详解】因为全集,所以0,2属于全集且不属于集合A,所以集合,故选:C.【点睛】本题主要考查集合补集的定义,属于基础题.2、C【解析】

利用“1”的代换结合基本不等式求最值即可【详解】∵两个正数a,b满足即a+3b=1则=当且仅当时取等号.故选C【点睛】本题考查了基本不等式求最值,巧用“1”的代换是关键,属于基础题.3、D【解析】

由已知的程序框图可知,本程序的功能是:计算并输出分段函数的值,由此计算可得结论.【详解】由已知的程序框图可知:本程序的功能是:计算并输出分段函数的值,可得,因为,所以,,故选D.【点睛】本题主要考查条件语句以及算法的应用,属于中档题.算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.4、A【解析】试题分析:即数列是公比为3的等比数列.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.5、C【解析】

将正方体的展开图还原为正方体后,即可得到所求正确结论.【详解】将正方体的展开图还原为正方体ABCD﹣EFMN后,可得AF,CN异面;BM,AN平行;连接AN,NF,可得∠FAN为AF,BM所成角,且为60°;BN⊥DE,DE⊥AB可得DE⊥平面ABN,可得DE⊥BN,可得③④正确,故选C.【点睛】本题考查展开图与空间几何体的关系,考查空间线线的位置关系的判断,属于基础题.6、B【解析】

由、都是单位向量,由向量的数量积和共线的定义可判断出正确选项.【详解】由、都是单位向量,所以.设、的夹角为.则,所以A,D不正确.当时,、同向或反向,所以C不正确.,所以B正确.故选:B【点睛】本题考查了单位向量的概念,属于概念考查题,应该掌握.7、B【解析】

通过余弦定理可得答案.【详解】设处与处之间的距离为千米,由余弦定理可得,则.【点睛】本题主要考查余弦定理的实际应用,难度不大.8、D【解析】

根据向量的平行可得4m=3m+4,解得即可.【详解】,,且,则,解得,故选D.【点睛】本题考查了向量平行的充要条件,考查了运算求解能力以及化归与转化思想,属于基础题.9、D【解析】

由面面垂直的性质和线线的位置关系可判断①;由面面垂直的性质定理可判断②;由线面垂直的性质定理可判断③.【详解】平面平面.直线平面,直线平面,,①若,可得,可能平行,故①错误;②若,由面面垂直的性质定理可得,故②正确;③若,可得,故③正确.故选:D.【点睛】本题考查空间线线和线面、面面的位置关系,主要是平行和垂直的判断和性质,考查推理能力,属于基础题.10、C【解析】

利用平面向量加法和减法的运算,求得的线性表示.【详解】依题意,即,故选C.【点睛】本小题主要考查平面向量加法和减法的运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(2,4)【解析】

令x-1=1,得到x=2,把x=2代入函数求出定点的纵坐标得解.【详解】令x-1=1,得到x=2,把x=2代入函数得,所以定点P的坐标为(2,4).故答案为:(2,4)【点睛】本题主要考查对数函数的定点问题,意在考查学生对该知识的理解掌握水平,属于基础题.12、【解析】

将函数变形为的形式,然后得到反函数,注意定义域.【详解】因为,所以,则反函数为:且.【点睛】本题考查反三角函数的知识,难度较易.给定定义域的时候,要注意函数定义域.13、(答案不唯一)【解析】

确定圆心到直线的距离,即可求直线的方程.【详解】由题意得圆心坐标,半径,,∴圆心到直线的距离为,∴满足条件的一条直线的方程为.故答案为:(答案不唯一).【点睛】本题考查直线和圆的方程的应用,考查学生的计算能力,属于中档题.14、6【解析】

利用代数余子式的定义直接求解.【详解】三阶行列式中,元素4的代数余子式的值为:.故答案为:6.【点睛】本题主要考查了三阶行列式中元素的代数余子式的求法,属于中档题.15、【解析】

设,,求点的坐标,运用换元法,求直线方程,再解出交点的坐标,再利用向量数量积运算求出,最后结合三角形面积公式求解即可.【详解】解:由,可设,,则,设,则,直线的方程为,直线的方程为,联立直线、方程解得,则,,可得,解得:,即,即,所以,故答案为:.【点睛】本题考查了向量的数量积运算,重点考查了两直线的交点坐标及三角形面积公式,属中档题.16、【解析】

由题意得出,然后在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】由题意得出.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】

(1)分别利用累加法、数列的递推公式得到数列和数列的通项公式.(2)利用数列求和的错位相减即可得到数列的前项和.【详解】(1),……,,以上个式子相加得:当时,=当时,,符合上式,(2)①②①-②得【点睛】已知求数列的通项公式时,可采用累加法得到通项公式,通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘)的前项和采用错位相减法.18、(Ⅰ);(Ⅱ)或.【解析】

(Ⅰ)根据直线与直线垂直,求得直线的斜率为,再利用直线的点斜式方程,即可求解;(Ⅱ)设所求直线方程为,由点到直线的距离公式,列出方程,求得的值,即可得到答案.【详解】(Ⅰ)由题意,设所求直线的斜率为,由直线的斜率为,因为直线与直线垂直,所以直线的斜率为,所以所求直线的方程为直线的方程为:,即.(Ⅱ)设所求直线方程为,即,直线上任取一点,由点到直线的距离公式,可得,解得或-4,所以所求直线方程为:或.【点睛】本题主要考查了直线方程的求解,两直线的位置关系的应用,以及点到直线的距离公式的应用,着重考查了推理与运算能力,属于基础题.19、(1);(2)P=.【解析】

试题分析:(1)依题意共有小球n+2个,标号为2的小球有n个,从袋子中随机抽取1个小球,取到标号为2的小球的概率为,解得n=2;(2)①从袋子中不放回地随机抽取2个小球共有12种结果,而满足2≤a+b≤3的结果有8种,故;②由①知,,故,(x,y)可以看成平面中的点的坐标,则全部结果所构成的区域为,由集合概型得概率为.考点:考查了古典概型和几何概型.点评:解本题的关键是掌握古典概型和集合概型的概率公式,并能正确应用.20、(1);(2)或;(3)【解析】

(1)设,根据圆心与关于直线对称,列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得,根据斜率分类讨论,求得直线的斜率,即可求解;(3)由直线,得直线过定点,根据时,弦长最短,即可求解.【详解】(1)由题意,圆的圆心,半径为,设,因为圆心与关于直线对称,所以,解得,则,半径,所以圆标准方程为:(2)设点到直线距离为,圆的弦长公式,得,解得,①当斜率不存在时,直线方程为,满足题意②当斜率存在时,设直线方程为,则,解得,所以直线的方程为,综上,直线方程为或(3)由直线,可化为,可得直线过定点,当时,弦长最短,又由,可得,此时最短弦长为.【点睛】本题主要考查了圆的对称圆的求解,以及直线与圆的位置关系的应用,其中解答中熟记直线与圆的弦长公式,合理、准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.21、(1)(2)单调增区间为,;单调减区间为.【解析】

(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与轴相邻的两个交点的距离为,得出周期,利用周期公式得出,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论