2023-2024学年四川省南充市嘉陵区达标名校中考数学全真模拟试卷含解析_第1页
2023-2024学年四川省南充市嘉陵区达标名校中考数学全真模拟试卷含解析_第2页
2023-2024学年四川省南充市嘉陵区达标名校中考数学全真模拟试卷含解析_第3页
2023-2024学年四川省南充市嘉陵区达标名校中考数学全真模拟试卷含解析_第4页
2023-2024学年四川省南充市嘉陵区达标名校中考数学全真模拟试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年四川省南充市嘉陵区达标名校中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,32.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A. B.4 C. D.3.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)4.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>55.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,2) B.(4,1) C.(4,) D.(4,)6.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线7.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是3的倍数的概率为()A. B. C. D.8.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是()A.10 B.12 C.20 D.249.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨)34567频数1254﹣xxA.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差10.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16C.q≤4 D.q≥4二、填空题(共7小题,每小题3分,满分21分)11.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.12.计算=_____.13.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为______.14.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.15.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).16.如图,若∠1+∠2=180°,∠3=110°,则∠4=.17.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=___________°.三、解答题(共7小题,满分69分)18.(10分)关于x的一元二次方程ax2+bx+1=1.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.19.(5分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)1812备注(1)用不超过16800元购进两类图书共1000本;(2)科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?20.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.求证:EF是⊙O的切线;已知AB=4,AE=1.求BF的长.21.(10分)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.22.(10分)已知关于的一元二次方程.试证明:无论取何值此方程总有两个实数根;若原方程的两根,满足,求的值.23.(12分)计算24.(14分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况每人植树棵数78910人数36156表2:乙调查三个年级各10位同学植树情况每人植树棵数678910人数363126根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是棵;表2中的众数是棵;(2)你认为同学(填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.2、B【解析】

求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.3、C【解析】

作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直线CD′的解析式为y=﹣x﹣1.令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,所以点P的坐标为(﹣,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.4、C【解析】

根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.【详解】解:∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>1k;两边同时除以k,因为k<0,因而解集是x<1.故选C.【点睛】本题考查一次函数与一元一次不等式.5、D【解析】

由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′==2,于是得到结论.【详解】解:∵AD′=AD=4,

AO=AB=1,

∴OD′==2,

∵C′D′=4,C′D′∥AB,

∴C′(4,2),故选:D.【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.6、C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.7、C【解析】

根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可.【详解】解:由题意可知,共有4种情况,其中是3的倍数的有6和9,∴是3的倍数的概率,故答案为:C.【点睛】本题考查了概率的计算,解题的关键是熟知概率的计算公式.8、B【解析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.9、B【解析】

由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.【详解】∵6吨和7吨的频数之和为4-x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即5+52∴对于不同的正整数x,中位数不会发生改变,∵后两组频数和等于4,小于5,∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.故选B.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.10、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选A.二、填空题(共7小题,每小题3分,满分21分)11、﹣1.【解析】试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴SQ+SM=SM+SP=(cm2),∴SQ=SP,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为﹣1.考点:扇形面积的计算.12、0【解析】分析:先计算乘方、零指数幂,再计算加减可得结果.详解:1-1=0故答案为0.点睛:零指数幂成立的条件是底数不为0.13、1【解析】解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△PAD的面积最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴当P点运动到BC中点时,△PAD的面积=×(AB+CD)×AD=1,故答案为1.14、210°【解析】

根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.【详解】解:如图:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.15、10海里.【解析】

本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程.【详解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到达甲船正西方向的B点,∴∠C=30°,∴AB=AC•tan30°=30×=10海里.答:乙船的路程为10海里.故答案为10海里.【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.16、110°.【解析】

解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案为110°.17、1【解析】∵在△ABC中,AB=BC,∠ABC=110°,

∴∠A=∠C=1°,

∵AB的垂直平分线DE交AC于点D,

∴AD=BD,

∴∠ABD=∠A=1°;

故答案是1.三、解答题(共7小题,满分69分)18、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=﹣2.【解析】

分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(2)解:由题意:.∵,∴原方程有两个不相等的实数根.(2)答案不唯一,满足()即可,例如:解:令,,则原方程为,解得:.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.19、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.【解析】

(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.20、(1)证明见解析;(2)2.【解析】

(1)作辅助线,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;(2)证明△ODF∽△AEF,列比例式可得结论.【详解】(1)证明:连接OD,AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切线;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键.21、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解析】

(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.【详解】(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.综上所述:在等腰三角形△ADP中,若PA=PD,则BP=1;若DP=DA,则BP=2-;若AP=AD,则BP=.(1)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=4,∴EF与BC之间的距离为4.∴OQ=4∴OQ=OE=4.∴⊙O与BC相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴BG=.∴BQ=GQ+BG=4+.∴当∠EQF=90°时,BQ的长为4+.(4)在线段CD上存在点M,使∠AMB=40°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,过点O作OH⊥CD,垂足为H,如图③.则⊙O是△ABG的外接圆,∵△ABG是等边三角形,GP⊥AB,∴AP=PB=AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等边三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP•tan40°=145×=25.∴OA=1OP=90.∴OH<OA.∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.∴∠AMB=∠AGB=40°,OM=OA=90..∵OH⊥CD,OH=6,OM=90,∴HM==40.∵AE=200,OP=25,∴DH=200-25.若点M在点H的左边,则DM=DH+HM=200-25+40.∵200-25+40>420,∴DM>CD.∴点M不在线段CD上,应舍去.若点M在点H的右边,则DM=DH-HM=200-25-40.∵200-25-40<420,∴DM<CD.∴点M在线段CD上.综上所述:在线段CD上存在唯一的点M,使∠AMB=40°,此时DM的长为(200-25-40)米.【点睛】本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论