版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大庆市让胡路区铁人中学2025届数学高一下期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知x,x134781016y57810131519则线性回归方程y=A.(8,10) B.(8,11) C.(7,10) D.(7,11)2.在等差数列中,若,则()A.10 B.15 C.20 D.253.在等差数列{an}中,已知a1=2A.50 B.52 C.54 D.564.已知数列是各项均为正数且公比不等于的等比数列.对于函数,若数列为等差数列,则称函数为“保比差数列函数”.现有定义在上的如下函数:①;②;③;④,则为“保比差数列函数”的所有序号为()A.①② B.③④ C.①②④ D.②③④5.在递增的等比数列an中,a4,a6是方程x2A.2 B.±2 C.12 D.16.某小组由名男生、名女生组成,现从中选出名分别担任正、副组长,则正、副组长均由男生担任的概率为()A. B. C. D.7.在锐角中,内角,,的对边分别为,,,若,则等于()A. B. C. D.8.电视台某节目组要从名观众中抽取名幸运观众.先用简单随机抽样从人中剔除人,剩下的人再按系统抽样方法抽取人,则在人中,每个人被抽取的可能性()A.都相等,且为 B.都相等,且为C.均不相等 D.不全相等9.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.10.若且,则下列不等式成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,为测量山高,选择和另一座山的山顶为测量观测点,从点测得的仰角,点的仰角以及;从点测得;已知山高,则山高__________.12.甲船在岛的正南处,,甲船以每小时的速度向正北方向航行,同时乙船自出发以每小时的速度向北偏东的方向驶去,甲、乙两船相距最近的距离是_____.13.设满足不等式组,则的最小值为_____.14.若直线与圆有公共点,则实数的取值范围是__________.15.设数列是等差数列,,,则此数列前20项和等于______.16.已知函数,若,则的取值围为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.18.如图,已知三棱柱的侧棱垂直于底面,,,点,分别为和的中点.(1)若,求三棱柱的体积;(2)证明:平面;(3)请问当为何值时,平面,试证明你的结论.19.已知各项为正数的数列满足:且.(1)证明:数列为等差数列.(2)若,证明:对一切正整数n,都有20.设函数(1)若对于一切实数恒成立,求的取值范围;(2)若对于恒成立,求的取值范围.21.已知函数,,数列满足,,.(1)求证;(2)求数列的通项公式;(3)若,求中的最大项.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先计算x,【详解】x=线性回归方程y=a+故答案选D【点睛】本题考查了回归方程,回归方程一定过数据中心点.2、C【解析】
设等差数列的公差为,得到,又由,代入即可求解,得到答案.【详解】由题意,设等差数列的公差为,则,又由,故选C.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中熟记等差数列的通项公式,准确计算是解答的关键,着重考查了计算与求解能力,属于基础题,.3、C【解析】
利用等差数列通项公式求得基本量d,根据等差数列性质可得a4【详解】设等差数列an公差为则a2+∴本题正确选项:C【点睛】本题考查等差数列基本量的求解问题,关键是能够根据等差数列通项公式构造方程求得公差,属于基础题.4、C【解析】
①,为“保比差数列函数”;②,为“保比差数列函数”;③不是定值,不是“保比差数列函数”;④,是“保比差数列函数”,故选C.考点:等差数列的判定及对数运算公式点评:数列,若有是定值常数,则是等差数列5、A【解析】
先解方程求出a4,a6,然后根据等比数列满足【详解】∵a4,a6是方程x2-10x+16=0的两个根,∴a4+a6=10,a4【点睛】本题考查等比数列任意两项的关系,易错点是数列an为递增数列,那么又q>16、B【解析】
根据古典概型的概率计算公式,先求出基本事件总数,正、副组长均由男生担任包含的基本事件总数,由此能求出正、副组长均由男生担任的概率.【详解】某小组由2名男生、2名女生组成,现从中选出2名分别担任正、副组长,基本事件总数,正、副组长均由男生担任包含的基本事件总数,正、副组长均由男生担任的概率为.故选.【点睛】本题主要考查古典概型的概率求法。7、D【解析】
由正弦定理将边化角可求得,根据三角形为锐角三角形可求得.【详解】由正弦定理得:,即故选:【点睛】本题考查正弦定理边化角的应用问题,属于基础题.8、A【解析】
根据随机抽样等可能抽取的性质即可求解.【详解】由随机抽样等可能抽取,可知每个个体被抽取的可能性相等,故抽取的概率为.故选:A【点睛】本题考查了随机抽样的特点,属于基础题.9、C【解析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.10、D【解析】
利用作差法对每一个选项逐一判断分析.【详解】选项A,所以a≥b,所以该选项错误;选项B,,符合不能确定,所以该选项错误;选项C,,符合不能确定,所以该选项错误;选项D,,所以,所以该选项正确.故选D【点睛】本题主要考查实数大小的比较,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】在△ABC中,,,在△AMC中,,由正弦定理可得,解得,在Rt△AMN中.12、【解析】
根据条件画出示意图,在三角形中利用余弦定理求解相距的距离,利用二次函数对称轴及可求解出最值.【详解】假设经过小时两船相距最近,甲、乙分别行至,,如图所示,可知,,,.当小时时甲、乙两船相距最近,最近距离为.【点睛】本题考查解三角形的实际应用,难度较易.关键是通过题意将示意图画出来,然后将待求量用未知数表示,最后利用函数思想求最值.13、-6【解析】作出可行域,如图内部(含边界),作直线,当向下平移时,减小,因此当过点时,为最小值.14、【解析】
直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数的取值范围是.【点睛】本题考查直线与圆的位置关系,点到直线距离公式是常用方法.15、180【解析】
根据条件解得公差与首项,再代入等差数列求和公式得结果【详解】因为,,所以,【点睛】本题考查等差数列通项公式以及求和公式,考查基本分析求解能力,属基础题16、【解析】
由函数,根据,得到,再由,得到,结合余弦函数的性质,即可求解.【详解】由题意,函数,又由,即,即,因为,则,所以或,即或,所以实数的取值围为.故答案为:.【点睛】本题主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟练应用余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】
(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.18、(1)4;(2)证明见解析;(3)时,平面,证明见解析.【解析】
(1)直接根据三棱柱体积计算公式求解即可;(2)利用中位线证明面面平行,再根据面面平行的性质定理证明平面;(3)首先设为,利用平面列出关于参数的方程求解即可.【详解】(1)∵三棱柱的侧棱垂直于底面,且,,,∴由三棱柱体积公式得:;(2)证明:取的中点,连接,,∵,分别为和的中点,∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)连接,设,则由题意知,,∵三棱柱的侧棱垂直于底面,∴平面平面,∵,∴,又点是的中点,∴平面,∴,要使平面,只需即可,又∵,∴,∴,即,∴,则时,平面.【点睛】本题考查了三棱柱的体积公式,线面平行的证明,利用线面垂直求参数,属于难题.19、(1)证明见解析.(2)证明见解析.【解析】
(1)根据所给递推公式,将式子变形,即可由等差数列定义证明数列为等差数列.(2)根据数列为等差数列,结合等差数列通项公式求法求得通项公式,并变形后令.由求得的取值范围,即可表示出,由不等式性质进行放缩,求得后,即可证明不等式成立.【详解】(1)证明:各项为正数的数列满足:则,,同取倒数可得,所以,由等差数列定义可知数列为等差数列.(2)证明:由(1)可知数列为等差数列.,则数列是以为首项,以为公差的等差数列.则,令,因为,所以,则,所以,所以,所以由不等式性质可知,若,则总成立,因而,所以所以不等式得证.【点睛】本题考查了数列递推公式的应用,由定义证明等差数列,换元法及放缩法在证明不等式中的应用,属于中档题.20、(1)(2)【解析】
(1)由不等式恒成立,结合二次函数的性质,分类讨论,即可求解;(2)要使对于恒成立,整理得只需恒成立,结合基本不等式求得最值,即可求解.【详解】(1)由题意,要使不等式恒成立,①当时,显然成立,所以时,不等式恒成立;②当时,只需,解得,综上所述,实数的取值范围为.(2)要使对于恒成立,只需恒成立,只需,又因为,只需,令,则只需即可因为,当且仅当,即时等式成立;因为,所以,所以.【点睛】本题主要考查了含参数的不等式的恒成立问题的求解,其中解答中把不等式的恒成立问题转化为函数的最值问题是解答的关键,着重考查了分类讨论思想,以及转化思想的应用,属于基础题.21、(1)见解析;(2);(3)【解析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超支化聚合物课程设计
- 超市收银管理系统课程设计
- 超市实地购物课程设计
- 二零二四年度网络教育平台建设与合作合同
- 2024年度游泳池赛事组织服务合同
- 超声波清洗课程设计
- 2024年度商场外部户外广告位租赁合同
- 二零二四年度影视制作合同:影视制作公司与投资方之间的合作协议
- 二零二四年份智慧城市解决方案提供合同
- 茶道主题视频讲解课程设计
- 华为认证无线工程师H35-460考试题及答案
- 2020-2024年上海市春考语文真题试卷汇编含答案
- 保安公司转让合同范例
- 人教版六年级语文上册第六单元习作:《学写倡议书》授课课件
- 2024保密知识教育考试题及答案(基础+提升)
- 《脑卒中后吞咽障碍的康复研究进展》
- 天津市五区县重点校联考2024-2025学年高三上学期11月期中考试 语文 版含答案
- 视光门诊年终总结及计划
- 汉语拼音默写表及拼读专练
- 植物学#-形考作业3-国开(ZJ)-参考资料
- 《汽车保险与理赔》-教学设计
评论
0/150
提交评论