全国名校大联考2025届高一下数学期末考试模拟试题含解析_第1页
全国名校大联考2025届高一下数学期末考试模拟试题含解析_第2页
全国名校大联考2025届高一下数学期末考试模拟试题含解析_第3页
全国名校大联考2025届高一下数学期末考试模拟试题含解析_第4页
全国名校大联考2025届高一下数学期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

全国名校大联考2025届高一下数学期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.集合,,则()A. B.C. D.2.已知是等差数列的前项和,.若对恒成立,则正整数构成的集合是()A. B. C. D.3.若向量的夹角为,且,,则向量与向量的夹角为()A. B. C. D.4.已知一扇形的周长为,圆心角为,则该扇形的面积为()A. B. C. D.5.集合,,则中元素的个数为()A.0 B.1 C.2 D.36.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一比值也可以表示为a=2cos72°,则=()A. B.1 C.2 D.7.已知函数图象的一条对称轴是,则函数的最大值为()A.5 B.3 C. D.8.已知直线倾斜角的范围是,则此直线的斜率的取值范围是()A. B.C. D.9.已知函数在处取得极小值,则的最小值为()A.4 B.5 C.9 D.1010.垂直于同一条直线的两条直线一定()A.平行 B.相交 C.异面 D.以上都有可能二、填空题:本大题共6小题,每小题5分,共30分。11.给出下列四个命题:①正切函数在定义域内是增函数;②若函数,则对任意的实数都有;③函数的最小正周期是;④与的图象相同.以上四个命题中正确的有_________(填写所有正确命题的序号)12.已知直线平分圆的周长,则实数________.13.已知数列从第项起每项都是它前面各项的和,且,则的通项公式是__________.14.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;15.已知与的夹角为,,,则________.16.正方体中,异面直线和所成角的余弦值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知离心率为的椭圆过点.(1)求椭圆的方程;(2)过点作斜率为直线与椭圆相交于两点,求的长.18.已知,其中,求:(1);;(2)与的夹角的余弦值.19.在正四棱柱中,底面边长为,侧棱长为.(1)求证:平面平面;(2)求直线与平面所成的角的正弦值;(3)设为截面内-点(不包括边界),求到面,面,面的距离平方和的最小值.20.在公比不为1的等比数列中,,且依次成等差数列(1)求数列的通项公式;(2)令,设数列的前项和,求证:21.已知等比数列的前项和为,且成等差数列,(1)求数列的公比;(2)若,求数列的通项公式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

求出中不等式的解集确定出,找出与的交集即可.【详解】解:由中不等式变形得:,解得:,即,,,故选:.【点睛】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.2、A【解析】

先分析出,即得k的值.【详解】因为因为所以.所以,所以正整数构成的集合是.故选A【点睛】本题主要考查等差数列前n项和的最小值的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.3、B【解析】

结合数量积公式可求得、、的值,代入向量夹角公式即可求解.【详解】设向量与的夹角为,因为的夹角为,且,,所以,,所以,又因为所以,故选B【点睛】本题考查向量的数量积公式,向量模、夹角的求法,考查化简计算的能力,属基础题.4、C【解析】

根据题意设出扇形的弧长与半径,通过扇形的周长与弧长公式即可求出扇形的弧长与半径,进而根据扇形的面积公式即可求解.【详解】设扇形的弧长为,半径为,扇形的圆心角的弧度数是.

则由题意可得:.

可得:,解得:,.可得:故选:C【点睛】本题主要考查扇形的周长与扇形的面积公式的应用,以及考查学生的计算能力,属于基础题.5、C【解析】,则,所以,元素个数为2个。故选C。6、A【解析】

根据已知利用同角三角函数基本关系式,二倍角公式、诱导公式化简即可求值得解.【详解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°•2sin72°=2sin144°=2sin36°,∴.故选:A.【点睛】本题主要考查了同角三角函数基本关系式,二倍角公式、诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.7、B【解析】

函数图象的一条对称轴是,可得,解得.可得函数,再利用辅助角公式、倍角公式、三角函数的有界性即可得出.【详解】函数图象的一条对称轴是,,解得.则函数当时取等号.函数的最大值为1.故选.【点睛】本题主要考查三角函数的性质应用以及利用二倍角公式和辅助角公式进行三角恒等变换.8、B【解析】

根据直线的斜率等于倾斜角的正切值求解即可.【详解】因为直线倾斜角的范围是,又直线的斜率,.故或.故.故选:B【点睛】本题主要考查了直线斜率与倾斜角的关系,属于基础题.9、C【解析】由,得,则,所以,所以,当且仅当,即时,等号成立,故选C.10、D【解析】试题分析:根据在同一平面内两直线平行或相交,在空间内两直线平行、相交或异面判断.解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D考点:空间中直线与直线之间的位置关系.二、填空题:本大题共6小题,每小题5分,共30分。11、②③④【解析】

①利用反例证明命题错误;②先判断为其中一条对称轴;③通过恒等变换化成;④对两个解析式进行变形,得到定义域和对应关系均一样.【详解】对①,当,显然,但,所以,不符合增函数的定义,故①错;对②,当时,,所以为的一条对称轴,当取,取时,显然两个数关于直线对称,所以,即成立,故②对;对③,,,故③对;对④,因为,,两个函数的定义域都是,解析式均为,所以函数图象相同,故④对.综上所述,故填:②③④.【点睛】本题对三角函数的定义域、值域、单调性、对称性、周期性等知识进行综合考查,求解过程中要注意数形结合思想的应用.12、1【解析】

由题得圆心在直线上,解方程即得解.【详解】由题得圆心(1,a)在直线上,所以.故答案为1【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.13、【解析】

列举,可找到是从第项起的等比数列,由首项和公比即可得出通项公式.【详解】解:,即,所以是从第项起首项,公比的等比数列.通项公式为:故答案为:【点睛】本题考查数列的通项公式,可根据递推公式求出.14、【解析】

以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.15、3【解析】

将平方再利用数量积公式求解即可.【详解】因为,故.化简得.因为,故.故答案为:3【点睛】本题主要考查了模长与数量积的综合运用,经常利用平方去处理.属于基础题.16、【解析】

由,可得异面直线和所成的角,利用直角三角形的性质可得结果.【详解】因为,所以异面直线和所成角,设正方体的棱长为,则直角三角形中,,,故答案为.【点睛】本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角,先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据离心率可得的关系,将点代入椭圆方程,可得椭圆方程;(2)直线方程与椭圆方程联立,可得弦长.【详解】(1),又,,即椭圆方程是,代入点,可得,椭圆方程是.(2)设直线方程是,联立椭圆方程代入可得.【点睛】本题考查了椭圆方程和直线与椭圆的位置关系,涉及弦长公式,属于简单题.18、(1)10;(2)【解析】试题分析:(1)本题考察的是平面向量的数量积和向量的模.先根据是相互垂直的单位向量表示出要用的两个向量,然后根据向量的数量积运算和向量模的运算即可求出答案.(2)本题考察的是平面向量的夹角余弦值,可以通过向量的数量积公式表示出夹角的余弦值.先求出向量的模长,然后根据(1)求出的的数量积代入公式,即可求出答案.试题解析:(1),.∴|.(2)考点:平面向量数量积的坐标表示、模和夹角.19、(1)证明见解析;(2)(3)【解析】

(1)利用在正方体的几何性质,得到,通过线面垂直和面面垂直的判定定理证明.(2)根据和平面平面,知是在平面上的射影,即为直线与平面所成的角,然后在中求解.(3)如图所示从向面,面,面引垂线,构成一个长方体,设到面,面,面的距离分别为x,y,z,,即长方体体对角线长的平方,当且仅当平面时,最小,然后用等体积法求解.【详解】(1)如图所示:在正方体中且,所以平面,又因为平面,所以平面平面.(2)因为,由(1)知平面平面,所以是在平面上的射影,所以即为直线与平面所成的角,在中,所以.(3)如图所示从向面,面,面引垂线,构成一个长方体,设到面,面,面的距离分别为x,y,z,,即长方体体对角线长的平方,当且仅当平面时,最小,又因为,即,,.【点睛】本题主要考查几何体中线面垂直,面面垂直的判定定理和线面角及距离问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.20、(1)(2)见证明【解析】

(1)根据已知条件得到关于的方程组,解方程组得的值,即得数列的通项公式;(2)先求出,,再利用裂项相消法求,不等式即得证.【详解】(1)设公比为,,,成等差数列,可得,即,解得(舍去),或,又,解得所以.(2)故,得【点睛】本题主要考查等比数列通项的求法,考查等差数列前n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论