宿州市重点中学2025届高一数学第二学期期末联考试题含解析_第1页
宿州市重点中学2025届高一数学第二学期期末联考试题含解析_第2页
宿州市重点中学2025届高一数学第二学期期末联考试题含解析_第3页
宿州市重点中学2025届高一数学第二学期期末联考试题含解析_第4页
宿州市重点中学2025届高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宿州市重点中学2025届高一数学第二学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.2.给定函数:①;②;③;④,其中奇函数是()A.① B.② C.③ D.④3.设首项为,公比为的等比数列的前项和为,则()A. B. C. D.4.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件5.如图是一个正方体的平面展开图,在这个正方体中①②③与为异面直线④以上四个命题中,正确的序号是()A.①②③ B.②④ C.③④ D.②③④6.点,,直线与线段相交,则实数的取值范围是()A. B.或C. D.或7.与直线垂直于点的直线的一般方程是()A. B. C. D.8.已知集合,,,则()A. B. C. D.9.设l是直线,,是两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则10.已知数列且是首项为2,公差为1的等差数列,若数列是递增数列,且满足,则实数a的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线过点,且在两坐标轴上的截距相等,则此直线的方程为_____________.12.设函数(是常数,).若在区间上具有单调性,且,则的最小正周期为_________.13.已知函数.利用课本中推导等差数列的前项和的公式的方法,可求得的值为_____.14.设常数,函数,若的反函数的图像经过点,则_______.15.化简:________16.等比数列中首项,公比,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,向量为单位向量,向量与的夹角为.(1)若向量与向量共线,求;(2)若与垂直,求.18.如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.(Ⅰ)求证:AF∥平面PEC;(Ⅱ)求证:平面PEC⊥平面PCD.19.已知向量a=(sinθ,1),b(1)若a⊥b,求(2)求|a20.已知函数.(1)当时,解不等式;(2)若,的解集为,求的最小値.21.已知等比数列的前项和为,且成等差数列,(1)求数列的公比;(2)若,求数列的通项公式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由题意首先确定流程图的功能,然后结合三角函数的性质求解所要输出的结果即开即可.【详解】根据程序框图知,该算法的目标是计算和式:.又因为,注意到,故:.故选:D.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2、D【解析】试题分析:,知偶函数,,知非奇非偶,知偶函数,,知奇函数.考点:函数奇偶性定义.3、D【解析】Sn====3-2an.4、B【解析】试题分析:把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不可能同时发生,是互斥事件,但除了事件“甲分得红牌”与“乙分得红牌”还有“丙分得红牌”,所以这两者不是对立事件,答案为B.考点:互斥与对立事件.5、D【解析】

作出直观图,根据正方体的结构特征进行判断.【详解】作出正方体得到直观图如图所示:由直观图可知,与为互相垂直的异面直线,故①不正确;,故②正确;与为异面直线,故③正确;由正方体性质可知平面,故,故④正确.故选:D【点睛】本题考查了正方体的结构特征,直线,平面的平行于垂直,属于基础题.6、B【解析】

根据,在直线异侧或其中一点在直线上列不等式求解即可.【详解】因为直线与线段相交,所以,,在直线异侧或其中一点在直线上,所以,解得或,故选B.【点睛】本题主要考查点与直线的位置关系,考查了一元二次不等式的解法,属于基础题.7、A【解析】由已知可得这就是所求直线方程,故选A.8、C【解析】由题意得,因为,所以,所以,故,故选C.9、D【解析】

利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【详解】A.若,,则与可能平行,也可能相交,所以不正确.B.若,,则与可能的位置关系有相交、平行或,所以不正确.C.若,,则可能,所以不正确.D.若,,由线面平行的性质过的平面与相交于,则,又.

所以,所以有,所以正确.故选:D【点睛】本题考查面面平行、垂直的判断,线面平行和垂直的判断,属于基础题.10、D【解析】

根据等差数列和等比数列的定义可确定是以为首项,为公比的等比数列,根据等比数列通项公式,进而求得;由数列的单调性可知;分别在和两种情况下讨论可得的取值范围.【详解】由题意得:,,是以为首项,为公比的等比数列为递增数列,即①当时,,,即只需即可满足②当时,,,即只需即可满足综上所述:实数的取值范围为故选:【点睛】本题考查根据数列的单调性求解参数范围的问题,涉及到等差和等比数列定义的应用、等比数列通项公式的求解、对数运算法则的应用等知识;解题关键是能够根据单调性得到关于变量和的关系式,进而通过分离变量的方式将问题转化为变量与关于的式子的最值的大小关系问题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】

分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为,把已知点坐标代入即可求出的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为,把已知点的坐标代入即可求出的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【详解】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为,把代入所设的方程得:,则所求直线的方程为即;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为,把代入所求的方程得:,则所求直线的方程为即.综上,所求直线的方程为:或.故答案为:或【点睛】此题考查学生会根据条件设出直线的截距式方程和点斜式方程,考查了分类讨论的数学思想,属于基础题.12、【解析】

由在区间上具有单调性,且知,函数的对称中心为,由知函数的对称轴为直线,设函数的最小正周期为,所以,,即,所以,解得,故答案为.考点:函数的对称性、周期性,属于中档题.13、1.【解析】

由题意可知:可以计算出的值,最后求出的值.【详解】设,,所以有,因为,因此【点睛】本题考查了数学阅读能力、知识迁移能力,考查了倒序相加法.14、1【解析】

反函数图象过(2,1),等价于原函数的图象过(1,2),代点即可求得.【详解】依题意知:f(x)=lg(x+a)的图象过(1,2),∴lg(1+a)=2,解得a=1.故答案为:1【点睛】本题考查了反函数,熟记其性质是关键,属基础题.15、【解析】

根据三角函数的诱导公式,准确运算,即可求解.【详解】由题意,可得.故答案为:.【点睛】本题主要考查了三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的诱导公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.16、9【解析】

根据等比数列求和公式,将进行转化,然后得到关于和的等式,结合,讨论出和的值,得到答案.【详解】因为等比数列中首项,公比,所以成首项为,公比为的等比数列,共项,所以整理得因为所以可得,等式右边为整数,故等式左边也需要为整数,则应是的约数,所以可得,所以,当时,得,此时当时,得,此时当时,得,此时,所以,故答案为:.【点睛】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)共线向量夹角为0°或180°,由此根据定义可求得两向量数量积.(2)由向量垂直转化为向量的当量积为0,从而求得,也就求得,再由余弦的二倍角公式可得.【详解】法一(1),故或向量,向量法二(1),设即或或(2)法一:依题意,,故法二:设即,又或【点睛】本题考查向量共线,向量垂直与数量积的关系,考查平面向量的数量积运算.解题时按向量数量积的定义计算即可.18、(Ⅰ)见解析(Ⅱ)见解析【解析】

(Ⅰ)取PC的中点G,连结FG、EG,AF∥EG又EG⊂平面PCE,AF⊄平面PCE,AF∥平面PCE;(Ⅱ)由(Ⅰ)得EG∥AF,只需证明AF⊥面PDC,即可得到平面PEC⊥平面PCD.【详解】证明:(Ⅰ)取PC的中点G,连结FG、EG,∴FG为△CDP的中位线,FG∥CD,FG=CD.∵四边形ABCD为矩形,E为AB的中点,∴AE∥CD,AE=CD.∴FG=AE,FG∥AE,∴四边形AEGF是平行四边形,∴AF∥EG又EG⊂平面PCE,AF⊄平面PCE,∴AF∥平面PCE;(Ⅱ)∵PA=AD.∴AF⊥PDPA⊥平面ABCD,∴PA⊥CD,又因为CD⊥AB,AP∩AB=A,∴CD⊥面APD∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC由(Ⅰ)得EG∥AF,∴EG⊥面PDC又EG⊂平面PCE,∴平面PEC⊥平面PCD.【点睛】本题考查了空间线面平行、面面垂直的判定,属于中档题.19、(1)-π4【解析】

(1)两向量垂直,坐标关系满足x1x2+y1y2=0,由已知可得关于sin【详解】(1)∵a⊥b,∴sinθ+cosθ=0(2)|a+b|=(1+sinθ)2+【点睛】本题考查向量的坐标运算,两向量垂直,求两向量之和的模的最大值,当计算到最大值为3+22时,由平方和公式还可以继续化简,即3+220、(1)或;(2)最小值为.【解析】

(1)由一元二次不等式的解法即可求得结果;(2)由题的根即为,,根据韦达定理可判断,同为正,且,从而利用基本不等式的常数代换求出的最小值.【详解】(1)当时,不等式,即为,可得,即不等式的解集为或.(2)由题的根即为,,故,,故,同为正,则,当且仅当,等号成立,所以的最小值为.【点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论