




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市外国语大学附属大境中学数学高一下期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在ΔABC中,内角A,B,C所对的边分别为a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π2.直线y=﹣x+1的倾斜角是()A.30∘ B.45∘ C.1353.在中,角A,B,C所对的边分别为a,b,c,若,则()A. B. C. D.4.圆和圆的公切线条数为()A.1 B.2 C.3 D.45.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是()A.“至少1名男生”与“全是女生”B.“至少1名男生”与“至少有1名是女生”C.“至少1名男生”与“全是男生”D.“恰好有1名男生”与“恰好2名女生”6.将一个底面半径和高都是的圆柱挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,剩余部分的体积记为,半径为的半球的体积记为,则与的大小关系为()A. B. C. D.不能确定7.已知向量,,,则与的夹角为()A. B. C. D.8.连续两次抛掷一枚质地均匀的硬币,出现正面向上与反面向上各一次的概率是(
)A. B. C. D.9.样本中共有个个体,其值分别为、、、、.若该样本的平均值为,则样本的方差为()A. B. C. D.10.直线的斜率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,面积为,则________.12.函数的单调增区间是________.13.已知一圆台的底面圆的半径分别为2和5,母线长为5,则圆台的高为_______.14.记为等差数列的前项和,若,则___________.15.在等腰中,为底边的中点,为的中点,直线与边交于点,若,则___________.16.设,用,表示所有形如的正整数集合,其中且,为集合中的所有元素之和,则的通项公式为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角(1)若问:观察者离墙多远时,视角最大?(2)若当变化时,求的取值范围.18.如图,某小区有一块半径为米的半圆形空地,开发商计划在该空地上征地建一个矩形的花坛和一个等腰三角形的水池EDC,其中为圆心,在圆的直径上,在半圆周上.(1)设,征地面积为,求的表达式,并写出定义域;(2)当满足取得最大值时,建造效果最美观.试求的最大值,以及相应角的值.19.已知函数.(1)求的单调递增区间;(2)求在区间的最大值和最小值.20.在中,角的对边分别为.若.(1)求;(2)求的面积的最大值.21.如图,在斜三棱柱中,侧面是边长为的菱形,平面,,点在底面上的射影为棱的中点,点在平面内的射影为证明:为的中点:求三棱锥的体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
利用正弦定理可求得sinB=12【详解】因为c=2bsinC,所以sinC=2sinBsinC,所以sinB=1【点睛】本题主要考查正弦定理的运用,难度较小.2、C【解析】
由直线方程可得直线的斜率,进而可得倾斜角.【详解】直线y=﹣x+1的斜率为﹣1,设倾斜角为α,则tanα=﹣1,∴α=135°故选:C.【点睛】本题考查直线的倾斜角和斜率的关系,属基础题.3、B【解析】
由题意和余弦定理可得,再由余弦定理可得,可得角的值.【详解】在中,,由余弦定理可得,,,又,.故选:.【点睛】本题考查利用余弦定理解三角形,考查了转化思想,属基础题.4、B【解析】
判断两圆的位置关系,根据两圆的位置关系判断两圆公切线的条数.【详解】圆的标准方程为,圆心坐标为,半径长为.圆的标准方程为,圆心坐标为,半径长为.圆心距为,由于,即,所以,两圆相交,公切线的条数为,故选B.【点睛】本题考查两圆公切线的条数,本质上就是判断两圆的位置关系,公切线条数与两圆位置的关系如下:①两圆相离条公切线;②两圆外切条公切线;③两圆相交条公切线;④两圆内切条公切线;⑤两圆内含没有公切线.5、D【解析】
从3名男生和2名女生中任选2名学生的所有结果有“2名男生”、“2名女生”、“1名男生和1名女生”.选项A中的两个事件为对立事件,故不正确;选项B中的两个事件不是互斥事件,故不正确;选项C中的两个事件不是互斥事件,故不正确;选项D中的两个事件为互斥但不对立事件,故正确.选D.6、C【解析】
根据题意分别表示出,通过比较。【详解】所以,选C。【点睛】,,。记住这几个公式即可,属于基础题目。7、D【解析】
直接利用向量的数量积转化求解向量的夹角即可.【详解】因为,所以与的夹角为.故选:D.【点睛】本题主要考查向量的夹角的运算,以及运用向量的数量积运算和向量的模.8、C【解析】
利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】由题意,连续两次抛掷一枚质地均匀的硬币,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情况,出现正面向上与反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2种,所以的概率为,故选C.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中熟练利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9、D【解析】
根据样本的平均数计算出的值,再利用方差公式计算出样本的方差.【详解】由题意可知,,解得,因此,该样本的方差为,故选:D.【点睛】本题考查方差与平均数的计算,灵活利用平均数与方差公式进行求解是解本题的关键,考查运算求解能力,属于基础题.10、A【解析】
一般式直线方程的斜率为.【详解】直线的斜率为.故选A【点睛】此题考察一般直线方程的斜率,属于较易基础题目二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】,,面积为,解得,由余弦定理可得:,所以,故答案为:【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.12、,【解析】
先利用诱导公式化简,即可由正弦函数的单调性求出。【详解】因为,所以的单调增区间是,。【点睛】本题主要考查诱导公式以及正弦函数的性质——单调性的应用。13、4【解析】
根据圆台轴截面等腰梯形计算.【详解】,设圆高为,由圆台轴截面是等腰梯形得:,即,,故答案为:4.【点睛】本题考查求圆台的高,解题关键是掌握圆台的性质,圆台轴截面是等腰梯形.14、100【解析】
根据题意可求出首项和公差,进而求得结果.【详解】得【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.15、;【解析】
题中已知等腰中,为底边的中点,不妨于为轴,垂直平分线为轴建立直角坐标系,这样,我们能求出点坐标,根据直线与求出交点,求向量的数量积即可.【详解】如上图,建立直角坐标系,我们可以得出直线,联立方程求出,,即填写【点睛】本题中因为已知底边及高的长度,所有我们建立直角坐标系,求出相应点坐标,而作为F点的坐标我们可以通过直线交点求出,把向量数量积通过向量坐标运算来的更加直观.16、【解析】
把集合中每个数都表示为2的0到的指数幂相加的形式,并确定,,,,每个数都出现次,于是利用等比数列求和公式计算,可求出数列的通项公式.【详解】由题意可知,,,,是0,1,2,,的一个排列,且集合中共有个数,若把集合中每个数表示为的形式,则,,,,每个数都出现次,因此,,故答案为:.【点睛】本题以数列新定义为问题背景,考查等比数列的求和公式,考查学生的理解能力与计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)3≤x≤1.【解析】试题分析:(1)利用两角差的正切公式建立函数关系式,根据基本不等式求最值,最后根据正切函数单调性确定最大时取法,(2)利用两角差的正切公式建立等量关系式,进行参变分离得,再根据a的范围确定范围,最后解不等式得的取值范围.试题解析:(1)当时,过作的垂线,垂足为,则,且,由已知观察者离墙米,且,则,所以,,当且仅当时,取“”.又因为在上单调增,所以,当观察者离墙米时,视角最大.(2)由题意得,,又,所以,所以,当时,,所以,即,解得或,又因为,所以,所以的取值范围为.18、(1)(2)最大值为,此时【解析】
(1)连接,在中,求出,进而求出面积以及角的范围;(2)令,再求出的范围,转化为二次函数即可求出最大值,以及相应角的值.【详解】(1)连接,在中,,(2),令,因为,所以,所以因为在上单调递增,所以时有最大值为,此时【点睛】本题主要考查三角函数与实际应用相结合,最终转化为二次函数进行求解,这类问题的特点是通过现实生活的事例考查解决问题的能力、仔细理解题,才能将实际问题转化为数学模型进行解答.19、(1),;(2),【解析】
(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值.【详解】解:(1)令,解得,即函数的单调递增区间为,(2)由(1)知所以当,即时,当,即时,【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.20、(1)(2)【解析】
(1)用正弦定理将式子化为,进行整理化简可得的值,即得角B;(2)由余弦定理可得关于的等式,再利用基本不等式和三角形面积公式可得面积最大值。【详解】(1)由题得,,,,解得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色设计与可持续发展竞争格局研究-洞察阐释
- 高效能制作与教育技术
- 党费分级备案管理制度
- 公司微信高效管理制度
- 公司文管中心管理制度
- 寺院殿堂卫生管理制度
- 防水施工安全教育协议
- 红利分享协议
- 页岩气合作协议
- 返修政策协议
- 肺结核的诊疗与护理
- 腹部常见疾病超声诊断课件
- 心理危机评估中的量表和工具
- 智能传感器系统(第二版)(刘君华)1-5章
- ISO9001-2015质量管理体系要求培训教材
- GB 4806.7-2023食品安全国家标准食品接触用塑料材料及制品
- 中药大剂量临床应用
- 注浆法施工技术二
- 湖南省消除艾梅乙工作考试复习题库大全(含答案)
- 电路分析基础PPT完整全套教学课件
- 南理工04级至07级数据结构课程期末考试试卷及答案
评论
0/150
提交评论