版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省齐齐哈尔市第八中学数学高一下期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A. B.π C.2π D.4π2.集合,,则=()A. B. C. D.3.若,,则与向量同向的单位向量是()A. B. C. D.4.在等差数列中,,是方程的两个根,则的前14项和为()A.55 B.60 C.65 D.705.已知函数的图像如图所示,关于有以下5个结论:(1);(2),;(3)将图像上所有点向右平移个单位得到的图形所对应的函数是偶函数;(4)对于任意实数x都有;(5)对于任意实数x都有;其中所有正确结论的编号是()A.(1)(2)(3) B.(1)(2)(4)(5) C.(1)(2)(4) D.(1)(3)(4)(5)6.已知正方体中,、分别为,的中点,则异面直线和所成角的余弦值为()A. B. C. D.7.如图是一个正四棱锥,它的俯视图是()A. B.C. D.8.已知为等差数列,为其前项和.若,则()A. B. C. D.9.设数列是等差数列,是其前项和,且,,则下列结论中错误的是()A. B. C. D.与均为的最大值10.已知等差数列中,,则公差()A. B. C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数满足,则的值为_____________.12.已知数列的前n项和,则___________.13.将一个圆锥截成圆台,已知截得的圆台的上、下底面面积之比是1:4,截去的小圆锥母线长为2,则截得的圆台的母线长为________.14.在锐角△ABC中,BC=2,sinB+sinC=2sinA,则AB+AC=_____15.方程组对应的增广矩阵为__________.16.如图,在正方体中,点是棱上的一个动点,平面交棱于点.下列命题正确的为_______________.①存在点,使得//平面;②对于任意的点,平面平面;③存在点,使得平面;④对于任意的点,四棱锥的体积均不变.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的单调递增区间;(2)求在区间的最大值和最小值.18.在锐角中,角,,所对的边分别为,,,且.(1)求;(2)若的面积为8,,求的值.19.在中,角所对的边分别为.且.(1)求的值;(2)若,求的面积.20.设集合,其中.(1)写出集合中的所有元素;(2)设,证明“”的充要条件是“”(3)设集合,设,使得,且,试判断“”是“”的什么条件并说明理由.21.定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为三角形”数列对于“三角形”数列,如果函数使得仍为一个三角形”数列,则称是数列的“保三角形函数”.(1)已知是首项为2,公差为1的等差数列,若,是数列的保三角形函数”,求的取值范围;(2)已知数列的首项为2019,是数列的前项和,且满足,证明是“三角形”数列;(3)求证:函数,是数列1,,的“保三角形函数”的充要条件是,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.2、C【解析】
根据交集定义直接求解可得结果.【详解】根据交集定义知:故选:【点睛】本题考查集合运算中的交集运算,属于基础题.3、A【解析】
先求出的坐标,然后即可算出【详解】因为,所以所以与向量同向的单位向量是故选:A【点睛】本题考查的是向量的坐标运算,属于基础题4、D【解析】
根据根与系数之间的关系求出a5+a10,利用等差数列的前n项和公式及性质进行求解即可.【详解】∵,是方程的两个根,可得,∴.故选D.【点睛】本题主要考查等差数列的前n项和公式的应用,考查了等差数列的性质的运用,根据根与系数之间的关系建立方程关系是解决本题的关键.5、B【解析】
由图象可观察出的最值和周期,从而求出,将图像上所有的点向右平移个单位得到的函数,可判断(3)的正误,利用,可判断(4)(5)的正误.【详解】由图可知:,所以,,所以,即因为,所以,所以,故(1)(2)正确将图像上所有的点向右平移个单位得到的函数为此函数是奇函数,故(3)错误因为所以关于直线对称,即有故(4)正确因为所以关于点对称,即有故(5)正确综上可知:正确的有(1)(2)(4)(5)故选:B【点睛】本题考查的是三角函数的图象及其性质,属于中档题.6、A【解析】
连接,则,所以为所求的角.【详解】连结,,因为、分别为,的中点,所以,则为所求的角,设正方体棱长为1,则,,,三角形AD1B为直角三角形,,选择A【点睛】本题主要考查了异面直线所成的夹角;求异面直线的夹角,通常把其中一条直线平移到和另外一条直线相交即得异面直线所成的角.属于中等题.7、D【解析】
根据正四棱锥的特征直接判定即可.【详解】正四棱锥俯视图可以看到四条侧棱与顶点,且整体呈正方形.故选:D【点睛】本题主要考查了正四棱锥的俯视图,属于基础题.8、D【解析】试题分析:设等差数列的公差为,由题意得,解得,所以,故答案为D.考点:1、数列的通项公式;2、数列的前项和.9、C【解析】
根据等差数列的性质,结合,,分析出错误结论.【详解】由于,,所以,,,所以,与均为的最大值.而,所以,所以C选项结论错误.故选:C.【点睛】本小题主要考查等差数列的性质,考查分析与推理能力,属于基础题.10、C【解析】
利用通项得到关于公差d的方程,解方程即得解.【详解】由题得.故选C【点睛】本题主要考查数列的通项的基本量的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将已知等式,两边同取以为底的对数,求出,利用换底公式,即可求解.【详解】,,,.故答案为:.【点睛】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.12、17【解析】
根据所给的通项公式,代入求得,并由代入求得.即可求得的值.【详解】数列的前n项和,则,而,,所以,则,故答案为:.【点睛】本题考查了数列前n项和通项公式的应用,递推法求数列的项,属于基础题.13、2【解析】
由截得圆台上,下底面积之比可得上,下底面半径之比,再根据小圆锥的母线即可得圆台母线.【详解】设截得的圆台的母线长为.因为截得的圆台的上、下底面面积之比是1:4,所以截得的圆台的上、下底面半径之比是1:2.因为截去的小圆锥母线长为2,所以,解得.【点睛】本题考查求圆台的母线,属于基础题.14、1【解析】
由正弦定理化已知等式为边的关系,可得结论.【详解】∵sinB+sinC=2sinA,由正弦定理得,即.故答案为1.【点睛】本题考查正弦定理,解题时利用正弦定理进行边角关系的转化即可.15、【解析】
根据增广矩阵的概念求解即可.【详解】方程组对应的增广矩阵为,故答案为:.【点睛】本题考查增广矩阵的概念,是基础题.16、①②④【解析】
根据线面平行和线面垂直的判定定理,以及面面垂直的判定定理和性质分别进行判断即可.【详解】①当为棱上的一中点时,此时也为棱上的一个中点,此时//,满足//平面,故①正确;②连结,则平面,因为平面,所以平面平面,故②正确;③平面,不可能存在点,使得平面,故③错误;④四棱锥的体积等于,设正方体的棱长为1.∵无论、在何点,三角形的面积为为定值,三棱锥的高,保持不变,三角形的面积为为定值,三棱锥的高为,保持不变.∴四棱锥的体积为定值,故④正确.故答案为①②④.【点睛】本题主要考查空间直线和平面平行或垂直的位置关系的判断,解答本题的关键正确利用分割法求空间几何体的体积的方法,综合性较强,难度较大.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2),【解析】
(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值.【详解】解:(1)令,解得,即函数的单调递增区间为,(2)由(1)知所以当,即时,当,即时,【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.18、(1)(2)【解析】
(1)利用正弦定理,将csinA=acosC转化为,可得,从而可得角C的大小;(2)利用面积公式直接求解b即可【详解】(1)由正弦定理得,因为所以sinA>0,从而,即,又,所以;(2)由得b=8【点睛】本题考查三角函数中的恒等变换应用,考查正弦定理的应用,面积公式的应用,考查化归思想属于中档题.19、(1)(2)【解析】
(1)根据正弦定理求出,然后代入所求的式子即可;(2)由余弦定理求出ab=4,然后根据三角形的面积公式求出答案.【详解】(1)因为,由正弦定理,得,∴;(2)∵,由余弦定理得,即,所以,解得或(舍去),所以【点睛】本题考查了正弦定理、余弦定理等知识.在解三角形问题中常涉及正弦定理、余弦定理、三角形面积公式及同角三角函数基本关系等问题,故应综合把握.20、(1),,,;(2)证明见解析;(3)充要条件.【解析】
(1)根据题意,直接列出即可(2)利用的和的符号和最高次的相同,利用排除法可以证明。(3)利用(2)的结论完成(3)即可。【详解】(1)中的元素有,,,。(2)充分性:当时,显然成立。必要性:若=1,则若=,则若的值有个1,和个。不妨设2的次数最高次为次,其系数为1,则,说明只要最高次的系数是正的,整个式子就是正的,同理,只要最高次的系数是负的,整个式子就是负的,说明最高次的系数只能是0,就是说,即综上“”的充要条件是“”(3)等价于等价于由(2)得“=”的充要条件是“”即“=”是“”的充要条件【点睛】本题考查了数列递推关系等差数列与等比数列的通项公式求和公式,考查了推理能力与计算能力,属于难题.21、(1);(2)见解析;(3)见解析.【解析】
(1)先由条件得是三角形数列,再利用,是数列的“保三角形函数”,得到,解得的取值范围;(2)先利用条件求出数列的通项公式,再证明其满足“三角形”数列的定义即可;(3)根据函数,,是数列1,,的“保三角形函数”,可以得到①1,,是三角形数列,所以,即,②数列中的各项必须在定义域内,即,③,,是三角形数列;结论为在利用,是单调递减函数,就可求出对应的范围,即可证明.【详解】(1)解:显然,对任意正整数都成立,即是三角形数列,因为,显然有,由得,解得,所以当时,是数列的“保三角形函数”;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论