版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江杭州地区重点中学2025届数学高一下期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆心为的圆与圆相外切,则圆的方程为()A. B.C. D.2.在中,,则的形状为()A.直角三角形 B.等腰三角形 C.钝角三角形 D.正三角形3.已知、是球的球面上的两点,,点为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为()A. B. C. D.4.已知函数,若,,则()A. B.2 C. D.5.已知函数,在下列函数图像中,不是函数的图像的是()A. B. C. D.6.函数的定义域为()A. B. C. D.7.某同学5天上学途中所花的时间(单位:分钟)分别为12,8,10,9,11,则这组数据的方差为()A.4 B.2 C.9 D.38.从A,B,C三个同学中选2名代表,则A被选中的概率为()A. B. C. D.9.在等差数列{an}中,若a1+A.8 B.16 C.20 D.2810.直线的倾斜角是()A.30° B.60° C.120° D.135°二、填空题:本大题共6小题,每小题5分,共30分。11.设,,,,,为坐标原点,若、、三点共线,则的最小值是_______.12.已知角满足,则_____13.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.14.设等比数列的首项为,公比为,所有项和为1,则首项的取值范围是____________.15.已知线段上有个确定的点(包括端点与).现对这些点进行往返标数(从…进行标数,遇到同方向点不够数时就“调头”往回数).如图:在点上标,称为点,然后从点开始数到第二个数,标上,称为点,再从点开始数到第三个数,标上,称为点(标上数的点称为点),……,这样一直继续下去,直到,,,…,都被标记到点上,则点上的所有标记的数中,最小的是_______.16.已知,,若,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励.图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率;(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当天甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.18.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为万元,求和;(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元,求和;(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?19.如图,在三棱柱中,侧棱垂直于底面,,,分别是,的中点.(1)求证:平面平面;(2)求证:平面.20.半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.根据频率分布直方图,估计这50名同学的数学平均成绩;用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.21.已知.(1)求;(2)求向量与的夹角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
求出圆的圆心坐标和半径,利用两圆相外切关系,可以求出圆的半径,求出圆的标准方程,最后化为一般式方程.【详解】设的圆心为A,半径为r,圆C的半径为R,,所以圆心A坐标为,半径r为3,圆心距为,因为两圆相外切,所以有,故圆的标准方程为:,故本题选A.【点睛】本题考查了圆与圆的相外切的性质,考查了已知圆的方程求圆心坐标和半径,考查了数学运算能力.2、A【解析】
在中,由,变形为,再利用内角和转化为,通过两角和的正弦展开判断.【详解】在中,因为,所以,所以,所以,所以,所以直角三角形.故选:A【点睛】本题主要考查了利用三角恒等变换判断三角形的形状,还考查了运算求解的能力,属于基础题.3、A【解析】
当点位于垂直于面的直径端点时,三棱锥的体积最大,利用三棱锥体积的最大值为,求出半径,即可求出球的表面积.【详解】如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,.因此,球的表面积为.故选:A.【点睛】本题考查球的半径与表面积的计算,确定点的位置是关键,考查分析问题和解决问题的能力,属于中等题.4、C【解析】
由函数的解析式,求得,,进而得到,,结合两角差的余弦公式和三角函数的基本关系式,即可求解.【详解】由题意,函数,令,即,即,所以,令,即,即,所以,又因为,,即,,所以,,即,,平方可得,,两式相加可得,所以.故选:C.【点睛】本题主要考查了两角和与差的余弦公式,三角函数的基本关系式的应用,以及函数的解析式的应用,其中解答中合理应用三角函数的恒等变换的公式进行运算是解答的关键,着重考查了推理与运算能力,属于中档试题.5、C【解析】
根据幂函数图像不过第四象限选出选项.【详解】函数为幂函数,图像不过第四象限,所以C中函数图像不是函数的图像.故选:C.【点睛】本小题主要考查幂函数图像不过第四象限,属于基础题.6、C【解析】要使函数有意义,需使,即,所以故选C7、B【解析】
先求平均值,再结合方差公式求解即可.【详解】解:由题意可得,由方差公式可得:,故选:B.【点睛】本题考查了样本数据的方差,属基础题.8、D【解析】
先求出基本事件总数,被选中包含的基本事件个数,由此能求出被选中的概率.【详解】从,,三个同学中选2名代表,基本事件总数为:,共个,被选中包含的基本事件为:,共2个,被选中的概率.故选:D.【点睛】本题考查概率的求法,考查列举法和运算求解能力,是基础题.9、C【解析】
因为an则a1所以a5故选C.10、C【解析】
根据直线方程求出斜率即可得到倾斜角.【详解】由题:直线的斜率为,所以倾斜角为120°.故选:C【点睛】此题考查根据直线方程求倾斜角,需要熟练掌握直线倾斜角与斜率的关系,熟记常见特殊角的三角函数值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据三点共线求得的的关系式,利用基本不等式求得所求表达式的最小值.【详解】依题意,由于三点共线,所以,化简得,故,当且仅当,即时,取得最小值【点睛】本小题主要考查三点共线的向量表示,考查利用基本不等式求最小值,属于基础题.12、【解析】
利用诱导公式以及两角和与差的三角公式,化简求解即可.【详解】解:角满足,可得
则.
故答案为:.【点睛】本题考查两角和与差的三角公式,诱导公式的应用,考查计算能力,是基础题.13、8π【解析】分析:作出示意图,根据条件分别求出圆锥的母线,高,底面圆半径的长,代入公式计算即可.详解:如下图所示,又,解得,所以,所以该圆锥的体积为.点睛:此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.14、【解析】
由题意可得得且,可得首项的取值范围.【详解】解:由题意得:,,故答案为:.【点睛】本题主要考查等比数列前n项的和、数列极限的运算,属于中档题.15、【解析】
将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,则,令,即可得.【详解】依照题意知,标有2的是1+2,标有3的是1+2+3,……,标有2019的是1+2+3+……+2019,将将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,,令,,解得,故点上的所有标记的数中,最小的是3.【点睛】本题主要考查利用合情推理,分析解决问题的能力.意在考查学生的逻辑推理能力,16、【解析】
根据向量垂直的坐标表示列出等式,求出,再利用二倍角公式、平方关系即可求出.【详解】由得,,解得,.【点睛】本题主要考查了向量垂直的坐标表示以及二倍角公式、平方关系的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)80人,13.25千步,(3)星期二【解析】
(1)根据统计图统计出甲乙两人合格的天数,再计算全部获奖概率;(2)根据频率分布直方图求出人数及平均步数;(3)根据频率分布直方图计算出甲乙的步数从而判断出星期几.【详解】(1)由统计图可知甲乙两人步数超过10000的有星期一、星期二、星期五、星期天设事件A为甲乙两人两天全部获奖,则(2)由图可知,解得所以该天运动步数不少于15000的人数为(人)全体职工在该天的平均步数为:(千步)(3)因为假设甲的步数为千步,乙的步数为千步由频率分布直方图可得:,解得,解得所以可得出的是星期二的频率分布直方图.【点睛】本题考查利用频率分布直方图来求平均数和概率,要注意计算的准确性,较简单.18、(1),(2),(3)至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【解析】
(1)利用等差数列、等比数列的通项公式求和(2)是数列的前项和,是数列的前项和减去600,利用等差数列和等比数列的前项和公式求出即可(3)作差,利用函数的单调性,即可得出结论【详解】(1)由题意得是等差数列,所以由题意得所以所以是首项为250,公比为的等比数列所以所以(2)是数列的前项和所以是数列的前项和减去600,所以(3)易得此函数当时单调递增且时时所以至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【点睛】本题考查的是数列的综合知识,包含通项公式的求法、前n项和的求法及数列的单调性.19、(1)证明见解析(2)证明见解析【解析】
(1)根据线面垂直的判断定理得到平面;再由面面垂直的判定定理,即可得出结论成立;(2)取的中点,连接,,根据线面平行的判定定理,即可得出结论成立.【详解】(1)在三棱柱中,底面,所以.又因为,所以平面;又平面,所以平面平面;(2)取的中点,连接,.因为,,分别是,,的中点,所以,且,.因为,且,所以,且,所以四边形为平行四边形,所以,又因为平面,平面,所以平面.【点睛】本题主要考查证明面面垂直,以及证明线面平行,熟记线面垂直、面面垂直的判定定理,以及线面平行的判定定理即可,属于常考题型.20、(1)(2)【解析】
⑴用频率分布直方图中的每一组数据的平均数乘以对应的概率并求和即可得出结果;⑵首先可通过分层抽样确定6人中在分数段以及分数段中的人数,然后分别写出所有的基本事件以及满足题意中“两名同学数学成绩均在中”的基本事件,最后两者相除,即可得出结果.【详解】⑴由频率分布表,估计这50名同学的数学平均成绩为:;⑵由频率分布直方图可知分数低于115分的同学有人,则用分层抽样抽取6人中,分数在有1人,用a表示,分数在中的有5人,用、、、、表示,则基本事件有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六年级语文下册 试卷第一单元 字词专项练习 (含答案)(部编版)
- 人教版三年级上册万以内的数加减法竖式计算100道及答案
- KTV合作经营协议书
- 2024家庭保姆的聘请合同模板
- 光伏电站设计方案
- 2024中外定期租船的合同范本
- 【豪华版】xxx景区智能安防管理综合解决实施方案
- 学校执行力管理学习通超星期末考试答案章节答案2024年
- 《沟通技巧》扩招班学习通超星期末考试答案章节答案2024年
- 快乐学习法模板
- 粉丝见面会策划方案
- 主机改造方案图解
- 红外物理与技术(第2版)杨风暴课后习题解答
- 小说阅读的方法和技巧课件
- 入户申请审批表(正反面,可直接打印)
- 倒数的认识分层作业设计
- 盾构法施工超前地质预报初探
- 23秋国家开放大学《植物病虫害防治基础》形考任务1-4参考答案
- 学校校园网络及信息安全管理制度(7篇)
- 贵州省医疗服务项目收费标准4170项
- 小学英语外研版三起点五年级上册-Module-1-单元整体教学设计
评论
0/150
提交评论