湖南省各地2025届高一数学第二学期期末预测试题含解析_第1页
湖南省各地2025届高一数学第二学期期末预测试题含解析_第2页
湖南省各地2025届高一数学第二学期期末预测试题含解析_第3页
湖南省各地2025届高一数学第二学期期末预测试题含解析_第4页
湖南省各地2025届高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省各地2025届高一数学第二学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若存在满足,且,则n的最小值为()A.3 B.4 C.5 D.62.在一个平面上,机器人到与点的距离为8的地方绕点顺时针而行,它在行进过程中到经过点与的直线的最近距离为()A. B. C. D.3.已知点是所在平面内的一定点,是平面内一动点,若,则点的轨迹一定经过的()A.重心 B.垂心 C.内心 D.外心4.若,则下列不等式成立的是()A. B.C. D.5.已知直线l的方程是y=2x+3,则l关于y=-x对称的直线方程是()A.x-2y+3=0 B.x-2y=0C.x-2y-3=0 D.2x-y=06.已知,且,则()A. B. C. D.27.如图所示是正方体的平面展开图,在这个正方体中CN与BM所成角为()A.30° B.45° C.60° D.90°8.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为()A. B. C. D.9.在区间上任取两个实数,则满足的概率为()A. B. C. D.10.在等差数列中,若,,则()A. B.0 C.1 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.某公司调查了商品的广告投入费用(万元)与销售利润(万元)的统计数据,如下表:广告费用(万元)销售利润(万元)由表中的数据得线性回归方程为,则当时,销售利润的估值为___.(其中:)12.设数列的前项和,若,,则的通项公式为_____.13.函数的值域是______.14.涡阳一中某班对第二次质量检测成绩进行分析,利用随机数表法抽取个样本时,先将个同学按、、、、进行编号,然后从随机数表第行第列的数开始向右读(注:如表为随机数表的第行和第行),则选出的第个个体是______.15.若函数,的最大值为,则的值是________.16._________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的公比,且,.(1)求数列的通项公式;(2)设,是数列的前项和,对任意正整数不等式恒成立,求的取值范围.18.已知函数.(1)求的单调递增区间;(2)求在区间上的值域.19.已知数列的前n项和为,满足:.(1)证明:数列是等比数列;(2)令,,求数列的前n项和.20.现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少?(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?21.已知函数,.(1)求函数在上的单调递增区间;(2)在中,内角、、所对边的长分别是,若,,,求的面积的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据正弦函数的性质,对任意(i,j=1,2,3,…,n),都有,因此要使得满足条件的n最小,则尽量让更多的取值对应的点是最值点,然后再对应图象取值.【详解】,因为正弦函数对任意(i,j=1,2,3,…,n),都有,要使n取得最小值,尽可能多让(i=1,2,3,…,n)取得最高点,因为,所以要使得满足条件的n最小,如图所示则需取,,,,,,即取,,,,,,即.故选:D【点睛】本题主要考查正弦函数的图象,还考查了数形结合的思想方法,属于中档题.2、A【解析】

由题意知机器人的运行轨迹为圆,利用圆心到直线的距离求出最近距离.【详解】解:机器人到与点距离为8的地方绕点顺时针而行,在行进过程中保持与点的距离不变,机器人的运行轨迹方程为,如图所示;与,直线的方程为,即为,则圆心到直线的距离为,最近距离为.故选.【点睛】本题考查了直线和圆的位置关系,以及点到直线的距离公式,属于基础题.3、A【解析】

设D是BC的中点,由,,知,所以点P的轨迹是射线AD,故点P的轨迹一定经过△ABC的重心.【详解】如图,设D是BC的中点,∵,,∴,即∴点P的轨迹是射线AD,∵AD是△ABC中BC边上的中线,∴点P的轨迹一定经过△ABC的重心.故选:A.【点睛】本题考查三角形五心的应用,是基础题.解题时要认真审题,仔细解答.4、B【解析】

利用不等式的性质,进行判断即可.【详解】因为,故由均值不等式可知:;因为,故;因为,故;综上所述:.故选:B.【点睛】本题考查均值不等式及利用不等式性质比较大小.5、A【解析】将x=-y,y=-x代入方程y=2x+3中,得所求对称的直线方程为-x=-2y+3,即x-2y+3=0.6、A【解析】

由平方关系得出的值,最后由商数关系求解即可.【详解】,故选:A【点睛】本题主要考查了利用平方关系以及商数关系化简求值,属于基础题.7、C【解析】

把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故∠EBM(或其补角)为所求.再由△BEM是等边三角形,可得∠EBM=60°,从而得出结论.【详解】把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故异面直线CN与BM所成的角就是BE和BM所成的角,故∠EBM(或其补角)为所求,再由BEM是等边三角形,可得∠EBM=60,故选:C【点睛】本题主要考查了求异面直线所成的角,体现了转化的数学思想,属于中档题.8、A【解析】所求的全面积之比为:,故选A.9、B【解析】试题分析:因为,在区间上任取两个实数,所以区域的面积为4,其中满足的平面区域面积为,故满足的概率为,选B.考点:本题主要考查几何概型概率计算.点评:简单题,几何概型概率的计算,关键是认清两个“几何度量”.10、C【解析】

根据等差数列性质得到答案.【详解】等差数列中,若,【点睛】本题考查了等差数列的性质,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、12.2【解析】

先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【点睛】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.12、【解析】

已知求,通常分进行求解即可。【详解】时,,化为:.时,,解得.不满足上式.∴数列在时成等比数列.∴时,.∴.故答案为:.【点睛】本题主要考查了数列通项式的求法:求数列通项式常用的方法有累加法、定义法、配凑法、累乘法等。13、【解析】

先求得函数的定义域,根据函数在定义域内的单调性,求得函数的值域.【详解】依题意可知,函数的定义域为,且函数在区间上为单调递增函数,故当时,函数有最小值为,当时,函数有最大值为.所以函数函数的值域是.故答案为:.【点睛】本小题主要考查反正弦函数的定义域和单调性,考查正弦函数的单调性,考查利用函数的单调性求函数的值域,属于基础题.14、.【解析】

根据随机数法列出前个个体的编号,即可得出答案.【详解】由随机数法可知,前个个体的编号依次为、、、、、、,因此,第个个体是,故答案为.【点睛】本题考查随机数法读取样本个体编号,读取时要把握两个原则:(1)看样本编号最大数为几位数,读取时就几个数连着一起取;(2)不在编号范围内的号码要去掉,重复的只能取第一次.15、【解析】

利用两角差的正弦公式化简函数的解析式为,由的范围可得的范围,根据最大值可得的值.【详解】∵函数=2()=,∵,∴∈[,],又∵的最大值为,所以的最大值为,即=,解得.故答案为【点睛】本题主要考查两角差的正弦公式的应用,正弦函数的定义域和最值,属于基础题.16、【解析】

根据诱导公式和特殊角的三角函数值可计算出结果.【详解】由题意可得,原式.故答案为.【点睛】本题考查诱导公式和特殊三角函数值的计算,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由,,根据等比数列的通项公式可解得,,进而可得答案;(2)根据错位相减法求出,代入不等式得对任意正整数恒成立,设,对分奇偶讨论,可得答案.【详解】(1)因为,所以.又因为,所以,,所以数列的通项公式为.(2)因为,所以,,两式相减得,,所以.所以对任意正整数恒成立.设,易知单调递增.当为奇数时,的最小值为,所以,解得;当为偶数时,的最小值为,所以.综上,,即的取值范围是.【点睛】本题考查了求等比数列的通项公式,考查了错位相减法求和,考查了数列的单调性,考查了不等式恒成立,属于中档题.18、(1);(2)【解析】

(1)利用两角差的余弦和诱导公式化简f(x),再求单调区间即可;(2)由结合三角函数性质求值域即可【详解】(1)令,得,的单调递增区间为;(2)由得,故而.【点睛】本题考查三角恒等变换,三角函数单调性及值域问题,熟记公式准确计算是关键,是基础题19、(1)证明见解析(2)【解析】

(1)利用当时,求证即可;(2)先结合(1)求得,再由,然后累加求和即可.【详解】解:(1)因为,①,②①-②得:,即,又,即,则,即数列是以6为首项,3为公比的等比数列;(2)由(1)得,则,即,则,即,故.【点睛】本题考查了利用定义法证明等比数列,重点考查了公式法求和及裂项求和法求和,属中档题.20、(1)312(2)【解析】试题分析:(1)明确柱体与锥体积公式的区别,分别代入对应公式求解;(2)先根据体积关系建立函数解析式,,然后利用导数求其最值.试题解析:解:(1)由PO1=2知OO1=4PO1=8.因为A1B1=AB=6,所以正四棱锥P-A1B1C1D1的体积正四棱柱ABCD-A1B1C1D1的体积所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a(m),PO1=h(m),则0<h<6,OO1=4h.连结O1B1.因为在中,所以,即于是仓库的容积,从而.令,得或(舍).当时,,V是单调增函数;当时,,V是单调减函数.故时,V取得极大值,也是最大值.因此,当m时,仓库的容积最大.【考点】函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点等方面进行强化,注重培养将文字语言转化为数学语言的能力,强化构建数学模型的几种方法.而江苏高考的应用题往往需结合导数知识解决相应的最值问题,因此掌握利用导数求最值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论