版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届宁夏青铜峡市吴忠中学分校高一下数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,若将它的图象向右平移个单位长度,得到函数的图象,则函数的图象的一条对称轴的方程为()A. B. C. D.2.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤”,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重多少斤?()A.6斤 B.7斤 C.9斤 D.15斤3.函数的单调减区间为()A.(kπ﹣,kπ],(k∈Z) B.(kπ﹣,kπ],(k∈Z)C.(kπ﹣,kπ+],(k∈Z) D.(kπ+,kπ+],(k∈Z)4.在数列中,已知,,则该数列前2019项的和()A.2019 B.2020 C.4038 D.40405.如果成等差数列,成等比数列,那么等于()A. B. C. D.6.如图所示,在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()A.AC B.A1D1 C.A1D D.BD7.棱长都是1的三棱锥的表面积为()A. B. C. D.8.设等比数列的前项和为,若,公比,则的值为()A.15 B.16 C.30 D.319.已知等比数列的公比为正数,且,则()A. B. C. D.10.计算()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知球为正四面体的外接球,,过点作球的截面,则截面面积的取值范围为____________________.12.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.13.若数列的前项和,满足,则______.14.在四面体中,平面ABC,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.15.设偶函数的部分图像如图所示,为等腰直角三角形,,则的值为________.16.若数列满足,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知0<α<π,cos(1)求tanα+(2)求sin2α+118.已知函数,且函数是偶函数,设(1)求的解析式;(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;(3)若方程有三个不同的实数根,求实数的取值范围.19.如图,在中,为边上一点,,若.(1)若是锐角三角形,,求角的大小;(2)若锐角三角形,求的取值范围.20.已知数列满足若数列满足:(1)求数列的通项公式;(2)求证:是等差数列.21.已知直线:,一个圆的圆心在轴上且该圆与轴相切,该圆经过点.(1)求圆的方程;(2)求直线被圆截得的弦长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分析:由左加右减,得出解析式,因为解析式为正弦函数,所以令,解出,对k进行赋值,得出对称轴.详解:由左加右减可得,解析式为正弦函数,则令,解得:,令,则,故选B.点睛:三角函数图像左右平移时,需注意要把x放到括号内加减,求三角函数的对称轴,则令等于正弦或余弦函数的对称轴公式,求出x解析式,即为对称轴方程.2、D【解析】
直接利用等差数列的求和公式求解即可.【详解】因为每一尺的重量构成等差数列,,,,数列的前5项和为.即金锤共重15斤,故选D.【点睛】本题主要考查等差数列求和公式的应用,意在考查运用所学知识解答实际问题的能力,属于基础题.3、C【解析】
根据复合函数的单调性,得到函数的减区间,即为的增区间,且,根据三角函数的图象与性质,即可求解.【详解】由题意,函数在定义域上是减函数,根据复合函数的单调性,可得函数的减区间,即的增区间,且,则,得,则函数的单调递减区间为,故选C.【点睛】本题主要考查了对数函数及三角函数的图象与性质的应用,其中解答中熟记对数函数的性质,以及三角函数的图象与性质,根据复合函数的单调性进行判定是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解析】
根据条件判断出为等差数列,利用等差数列的性质得到和之间的关系,得到答案.【详解】为等差数列【点睛】本题考查等差中项,等差数列的基本性质,属于简单题.5、D【解析】
因为成等差数列,所以,因为成等比数列,所以,因此.故选D6、D【解析】
在正方体内结合线面关系证明线面垂直,继而得到线线垂直【详解】,平面,平面,则平面又因为平面则故选D【点睛】本题考查了线线垂直,在求解过程中先求得线面垂直,由线面垂直的性质可得线线垂直,从而得到结果7、A【解析】
三棱锥的表面积为四个边长为1的等边三角形的面积和,故,故选A.8、A【解析】
直接利用等比数列前n项和公式求.【详解】由题得.故选A【点睛】本题主要考查等比数列求和,意在考查学生对该知识的理解掌握水平和分析推理能力.9、D【解析】设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,故选D.10、A【解析】
根据对数运算,即可求得答案.【详解】故选:A.【点睛】本题主要考查了对数运算,解题关键是掌握对数运算基础知识,考查了计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
在平面中,过圆内一点的弦长何时最长,何时最短,类比在空间中,过球内一点的球的大圆面积最大,与此大圆垂直的截面小圆面积最小.利用正四面体的性质及球的性质求正四面体外接球的半径、小圆半径,确定答案.【详解】因为正四面体棱长为AB=3,所以正四面体外接球半径R=.由球的性质,当过E及球心O时的截面为球的大圆,面积最大,最大面积为;当过E的截面与EO垂直时面积最小,取△BCD的中心,因为为正四面体,所以平面BCD,O在上,,所以,在三角形中,由,,,,由余弦定理在直角三角形中所以过E且与EO垂直的截面圆的半径r为,截面面积为.所以所求截面面积的范围是.【点睛】本题考查空间想象能力,逻辑推理能力,空间组合体的关系,正四面体、球的性质,考查计算能力,属于难题.12、.【解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.13、【解析】
令,得出,令,由可计算出在时的表达式,然后就是否符合进行检验,由此可得出.【详解】当时,;当时,则.也适合.综上所述,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但需要对进行检验,考查计算能力,属于基础题.14、【解析】
设,再根据外接球的直径与和底面外接圆的一条直径构成直角三角形求解进而求得体积即可.【详解】设,底面外接圆直径为.易得底面是边长为3的等边三角形.则由正弦定理得.又外接球的直径与和底面外接圆的一条直径构成直角三角形有.又外接球的表面积为,即.解得.故四面体体积为.故答案为:【点睛】本题主要考查了侧棱垂直于底面的四面体的外接球问题.需要根据题意建立底面三角形外接圆的直径和三棱锥的高与外接球直径的关系再求解.属于中档题.15、【解析】的部分图象如图所示,为等腰直角三角形,,,函数是偶函数,,函数的解析式为,故答案为.【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求使解题的关键.求解析时求参数是确定函数解析式的关键,往往利用特殊点求的值,由特殊点求时,一定要分清特殊点是“五点法”的第几个点.16、【解析】
利用递推公式再递推一步,得到一个新的等式,两个等式相减,再利用累乘法可求出数列的通项公式,利用所求的通项公式可以求出的值.【详解】得,,所以有,因此.故答案为:【点睛】本题考查了利用递推公式求数列的通项公式,考查了累乘法,考查了数学运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)12;(2)1【解析】
(1)利用同角三角函数平方和商数关系求得tanα;利用两角和差正切公式求得结果;(2)利用二倍角公式化简所求式子,分子分母同时除以cos2α【详解】(1)∵0<α<π,cosα=-3∴tanα=(2)sin=【点睛】本题考查利用同角三角函数、两角和差正切公式、二倍角的正余弦公式化简求值问题,关键是能够利用求解关于正余弦的齐次式的方式,将问题转化为与tanα18、(1);(2);(3).【解析】
(1)对称轴为,对称轴为,再根据图像平移关系求解;(2)分离参数,转化为求函数的最值;(3)令为整体,转化为二次函数根的分布问题求解.【详解】(1)函数的对称轴为,因为向左平移1个单位得到,且是偶函数,所以,所以.(2)即又,所以,则因为,所以实数的取值范围是.(3)方程即化简得令,则若方程有三个不同的实数根,则方程必须有两个不相等的实数根,且或,令当时,则,即,当时,,,,舍去,综上,实数的取值范围是.【点睛】本题考查求函数解析式,函数不等式恒成立及函数零点问题.函数不等式恒成立通常采用参数分离法;函数零点问题要结合函数与方程的关系求解.19、(1);(2)【解析】
(1)利用正弦定理,可得,然后利用,可得结果.(2)【详解】在中,,又,,所以,又是锐角三角形所以,所以又,则,所以故(2)由,所以,即由锐角三角形,所以所以,所以故,则所以【点睛】本题主要考查正弦定理边角互换,重点掌握公式,难点在于对角度范围求取,属中档题.20、(1)(1)证明见解析【解析】
数列满足,变形为,利用等比数列的通项公式即可得出数列满足:,时,,可得,化为:,可得:,相减化简即可证明.【详解】(1)数列满足,,数列是等比数列,首项为1,公比为1.,.证明:数列满足:,时,,解得.时,,可得,化为:,可得:,相减可得:,化为:,是等差数列.【点睛】本题主要考查了等差数列与等比数列的定义通项公式、指数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广安职业技术学院《短片拍摄与剪辑》2023-2024学年第一学期期末试卷
- 三年级科学下册第一单元土壤与生命3肥沃的土壤教案苏教版
- 药品知识培训课件
- 产品成本控制教学培训课件
- 《糖尿病足的预防》课件
- 确保培训课件内容
- 《氧化硫满意》课件
- 《汉字的演变过程》课件
- 培训课件专员
- 学校保卫检查考核奖惩制度
- 旅行社合伙经营协议
- 桩基检测选桩方案
- 脑梗塞老人的营养护理措施
- 电动汽车胶粘剂市场洞察报告
- 不锈钢楼梯扶手安装合同
- 开荒保洁物业管理开荒保洁服务实施方案
- GA/T 2015-2023芬太尼类药物专用智能柜通用技术规范
- 新华DCS软件2.0版使用教程-文档资料
- 住所的承诺书范文
- 售前解决方案部门管理规章制度
- 幼儿园游戏活动材料投放与指导课件
评论
0/150
提交评论