版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省招远市第一中学2025届高一数学第二学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义在上的奇函数满足,且当时,,则()A.1 B.-1 C.2 D.-22.设,是平面内一组基底,若,,,则以下不正确的是()A. B. C. D.3.如图,在中,,用向量,表示,正确的是A. B.C. D.4.若是一个圆的方程,则实数的取值范围是()A. B.C. D.5.在中,角的对边分别为,若,则形状是()A.直角三角形 B.等腰三角形C.等腰直角三角形 D.等腰或直角三角形6.在中,,,,则的面积是().A. B. C.或 D.或7.中,,,,则()A.1 B. C. D.48.若实数a、b满足条件,则下列不等式一定成立的是A. B. C. D.9.设变量,满足约束条件,则目标函数的最大值为()A. B. C. D.10.甲乙两名同学6次考试的成绩统计如右图,甲乙两组数据的平均数分别为,标准差分别为则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,数列的通项公式是,当取得最小值时,_______________.12.设,,,则,,从小到大排列为______13.数列满足,则数列的前6项和为_______.14.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).15.设为数列的前项和,若,则数列的通项公式为__________.16.在空间直角坐标系中,三棱锥的各顶点都在一个半径为的球面上,为球心,,,,,则球的体积与三棱锥的体积之比是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(I)若,共线,求的值.(II)若,求的值;(III)当时,求与夹角的余弦值.18.已知函数(),设函数在区间上的最大值为.(1)若,求的值;(2)若对任意的恒成立,试求的最大值.19.△ABC中,a=7,c=3,且=.(1)求b;(2)求∠A.20.求经过直线:与直线:的交点,且分别满足下列条件的直线方程.(Ⅰ)与直线平行;(Ⅱ)与直线垂直.21.在一次人才招聘会上,有A、B两家公司分别开出了它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资增加基础上递增5%,设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作年,则他在第年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其它因素),该人应该选择哪家公司,为什么?(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元(精确到1元),并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.【详解】∵是定义在R上的奇函数,且;∴;∴;∴的周期为4;∵时,;∴由奇函数性质可得;∴;∴时,;∴.故选:B.【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.2、D【解析】
由已知及平面向量基本定理可得:,问题得解.【详解】因为,是平面内一组基底,且,由平面向量基本定理可得:,所以,所以D不正确故选D【点睛】本题主要考查了平面向量基本定理的应用,还考查了同角三角函数的基本关系,属于较易题.3、C【解析】
由得,再由向量的加法得,最后把代入,求得答案.【详解】因为,故选C.【点睛】本题考查向量的加法和数乘运算的几何意义,考查平面向量基本定理在图形中的应用.4、C【解析】
根据即可求出结果.【详解】据题意,得,所以.【点睛】本题考查圆的一般方程,属于基础题型.5、D【解析】
由,利用正弦定理化简可得sin2A=sin2B,由此可得结论.【详解】∵,∴由正弦定理可得,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形状是等腰三角形或直角三角形故选D.【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.6、C【解析】,∴,或.()当时,.∴.()当时,.∴.故选.7、C【解析】
利用三角形内角和为可求得;利用正弦定理可求得结果.【详解】由正弦定理得:本题正确选项:【点睛】本题考查正弦定理解三角形,属于基础题.8、D【解析】
根据题意,由不等式的性质依次分析选项,综合即可得答案.【详解】根据题意,依次分析选项:对于A、,时,有成立,故A错误;对于B、,时,有成立,故B错误;对于C、,时,有成立,故C错误;对于D、由不等式的性质分析可得若,必有成立,则D正确;故选:D.【点睛】本题考查不等式的性质,对于错误的结论举出反例即可.9、C【解析】
作出可行域,利用平移法即可求出.【详解】作出不等式组表示的平面区域,如图所示:当直线平移至经过直线与直线的交点时,取得最大值,.故选:C.【点睛】本题主要考查简单线性规划问题的解法应用,属于基础题.10、C【解析】
利用甲、乙两名同学6次考试的成绩统计直接求解.【详解】由甲乙两名同学6次考试的成绩统计图知:甲组数据靠上,乙组数据靠下,甲组数据相对集中,乙组数据相对分散分散布,由甲乙两组数据的平均数分别为,标准差分别为得,.故选:.【点睛】本题考查命题真假的判断,考查平均数、的定义和性质等基础知识,考查运算求解能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、110【解析】
要使取得最小值,可令,即,对的值进行粗略估算即可得到答案.【详解】由题知:①.要使①式取得最小值,可令①式等于.即,.又因为,,则当时,,,①式.则当时,,,①式.当或时,①式的值会变大,所以时,取得最小值.故答案为:【点睛】本题主要考查数列的函数特征,同时考查了指数函数和对数函数的性质,核心素养是考查学生灵活运用知识解决问题的能力,属于难题.12、【解析】
首先利用辅助角公式,半角公式,诱导公式分别求出,,的值,然后结合正弦函数的单调性对,,排序即可.【详解】由题知,,,因为正弦函数在上单调递增,所以.故答案为:.【点睛】本题考查了辅助角公式,半角公式,诱导公式,正弦函数的单调区间,属于基础题.13、84【解析】
根据分组求和法以及等差数列与等比数列前n项和公式求解.【详解】因为,所以.【点睛】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.14、1.76【解析】
将这6位同学的身高按照从低到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.【考点】中位数的概念【点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.15、,【解析】
令时,求出,再令时,求出的值,再检验的值是否符合,由此得出数列的通项公式.【详解】当时,,当时,,不合适上式,当时,,不合适上式,因此,,.故答案为,.【点睛】本题考查利用前项和求数列的通项,考查计算能力,属于中等题.16、【解析】
首先根据坐标求出三棱锥的体积,再计算出球的体积即可.【详解】有题知建立空间直角坐标系,如图所示由图知:平面,...故答案为:【点睛】本题主要考查三棱锥的外接球,根据题意建立空间直角坐标系为解题的关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II);(III)【解析】
(1)根据题意,由向量平行的坐标公式可得﹣2x=4,解可得x的值,即可得答案;(2)若,则有,结合向量数量积的坐标可得,即4x﹣2=0,解可得x的值,即可得答案;(3)根据题意,由x的值可得的坐标,由向量的坐标计算公式可得、和的值,结合,计算可得答案.解:(I)∵与共线,∴,(II)∵,∴,∴(III)∵,∵,,∴,又∵,∴.18、(1);(2)【解析】
(1)根据二次函数的单调性得在区间,单调递减,在区间单调递增,从得而得;(2)①当时,在区间上是单调函数,则,利用不等式的放缩法求得;②当时,对进行分类讨论,求得;从而求得k的最大值为.【详解】(1)当时,,结合图像可知,在区间,单调递减,在区间单调递增..(2)①当时,在区间上是单调函数,则,而,,,∴.②当时,的对称轴在区间内,则,又,(ⅰ)当时,有,,则,(ⅱ)当时,有,则,所以,对任意的都有,综上所述,时在区间的最大值为,所以k的最大值为.【点睛】本题考查一元二次函数的图象与性质、含参问题中的恒成立问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意讨论的完整性.19、(1);(2)∠A=120°.【解析】
由正弦定理求得b,由余弦定理求得cos∠A,进而求出∠A的值.【详解】(1)由正弦定理得=可得,==,所以b==1.(2)由余弦定理得cosA===,又因为,所以∠A=120°.【点睛】本题考查正弦定理、余弦定理的应用,属基础题,根据正弦定理求出b的值,是解题的关键.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)先求得直线与直线的交点坐标.根据平行直线的斜率关系得与平行直线的斜率,再由点斜式即可求得直线方程.(Ⅱ)根据垂直直线的斜率关系得与垂直的直线斜率,再由点斜式即可求得直线方程.【详解】解方程组得,所以直线与直线的交点是(Ⅰ)直线,可化为由题意知与直线平行则直线的斜率为又因为过所以由点斜式方程可得化简得所以与直线平行且过的直线方程为.(Ⅱ)直线的斜率为则由垂直时直线的斜率乘积为可知直线的斜率为由题意知该直线经过点,所以由点斜式方程可知化简可得所以与直线垂直且过的直线方程为.【点睛】本题考查了直线平行与垂直时的斜率关系,由点斜式求方程的用法,属于基础题.21、(1)在A公司第年收入为;在B公司连续工作年收入为;(2)应选择A公司,理由见详解;(3)827;理由见详解.【解析】
(1)先分别记该人在A公司第年收入为,在B公司连续工作年收入为,根据题中条件,即可直接得出结果;(2)根据等差数列与等比数列的求和公式,分别计算前的和,即可得出结果;(3)先令,将原问题转化为求的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 篮球教练聘用合同模板
- 文具制造力工施工合同
- 体育设施租赁协议-体育赛事
- 租赁GPS自行车导航追踪协议
- 江苏大学《工程伦理学》2022-2023学年第一学期期末试卷
- 江苏大学《大数据人工智能技术》2022-2023学年期末试卷
- 大型医院给排水系统施工合同
- 乳制品运输驾驶员聘用合同
- 汽车租赁协议附车辆信息清单
- 城市更新人工费施工合同
- 发热伴寒颤的护理课件
- 地貌与公路工程-河谷地貌(工程地质课件)
- 99D102-1 6~10kV铁横担架空绝缘线路安装
- 江西省南昌三中高新校区2023-2024学年八年级上学期期中地理试卷
- 消防安全管理程序
- 如何积极应对人工智能时代带来的各种挑战800字
- 煤矿井下摄像、拍照安全技术措施
- 2023-2024学年八年级上册地理期中质量检测试卷(含答案)
- (6.1)-第二章追求远大理想 坚定崇高信念
- 中国共产主义青年团团员发展过程纪实簿
- 中国古代文化常识:全新补订版
评论
0/150
提交评论