版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2.1中心投影与平行投影1.2.2空间几何体的三视图学习目标1.了解中心投影和平行投影.2.能画出简单空间图形的三视图.3.能识别三视图所表示的立体模型.知识点一投影的概念思考由下图你能说出影子是怎样得到的吗?答案光照射到不透明物体(比如手)上,在后面的屏幕上留下影子.梳理(1)定义:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.(2)投影线:光线.(3)投影面:留下物体影子的屏幕.知识点二投影的分类投影定义特征分类中心投影光由一点向外散射形成的投影投影线交于一点平行投影在一束平行光线照射下形成的投影投影线平行正投影和斜投影知识点三三视图思考如梦似幻!——这是无数来自全世界的游客对国家游泳中心“水立方”的第一印象.假如你站在水立方入口处的正前方或在“水立方”的左侧看水立方,你看到的是什么?若你在“水立方”的正上方观察水立方看到什么?根据上述三个方向观察到的平面,能否画出“水立方”的形状?答案“水立方”的一个侧面.“水立方”的一个表面.可以.梳理三视图的概念(1)定义(2)三视图的画法规则①正、俯视图都反映物体的长度——“长对正”;②正、侧视图都反映物体的高度——“高平齐”;③俯、侧视图都反映物体的宽度——“宽相等”.(3)三视图的排列顺序:先画正视图,侧视图在正视图的右边,俯视图在正视图的下边.类型一中心投影与平行投影例1(1)①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线;③几何体在平行投影与中心投影下有不同的表现形式.其中正确说法的个数为()A.0B.1C.2D.3答案D解析由平行投影和中心投影的定义知,平行投影的投影线互相平行,中心投影的投影线相交于一点,故①正确;空间图形经过中心投影后,直线变成直线,但平行线有可能变成相交线,如照片中由近到远物体之间的距离越来越近,最后相交于一点,故②正确;几何体在平行投影与中心投影下有不同的表现形式,故③正确.故选D.(2)如图所示,在正方体ABCD-A′B′C′D′中,E,F分别是A′A,C′C的中点,则下列判断正确的是________.(只填序号)①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在面A′D′DA内的投影是菱形;③四边形BFD′E在面A′D′DA内的投影与在面ABB′A′内的投影是全等的平行四边形.答案①③解析①四边形BFD′E的四个顶点在底面ABCD内的投影分别是B,C,D,A,所以投影是正方形,即①正确;②设正方体的棱长为2,则AE=1,取D′D的中点G,连接AG,则四边形BFD′E在面A′D′DA内的投影是四边形AGD′E,由AE∥D′G,且AE=D′G,知四边形AGD′E是平行四边形,但AE=1,D′E=eq\r(5),所以四边形AGD′E不是菱形,即②不正确;对于③,由②可知两个投影四边形是对边分别相等的平行四边形,从而③正确.反思与感悟(1)判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.(2)画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得出此图形在该平面上的投影.跟踪训练1(1)已知△ABC,选定的投影面与△ABC所在平面平行,则经过中心投影后所得的△A′B′C′与△ABC的关系是()A.全等 B.相似C.不相似 D.以上都不对答案B解析根据题意画出图形如图.由图易得eq\f(AB,A′B′)=eq\f(OB,OB′)=eq\f(BC,B′C′)=eq\f(OC,OC′)=eq\f(AC,A′C′),则△ABC∽△A′B′C′.(2)如图,E,F分别是正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图中的________.(要求把所有可能的序号都填上)答案②③解析其中②可以是四边形BFD1E在正方体的面ABCD或面D1DCC1上的正投影.③可以是四边形BFD1E在正方体的面BCC1B1上的正投影.四边形BFD1E在正方体任何一个面上的正投影都不是①④.类型二三视图的画法与识别eq\x(命题角度1三视图的识别)例2一个长方体截去两个三棱锥,得到的几何体如图所示,则该几何体的三视图为()答案C解析从该几何体可以看出,正视图是一个矩形内有一斜向上的对角线;俯视图是一个矩形内有一斜向下的对角线,没有斜向上的对角线,故排除B、D项;侧视图是一个矩形内有一斜向下的对角线,且都是实线,因为没有看不到的轮廓线,所以排除A项.跟踪训练2将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为()答案B解析由几何体的正视图和俯视图可知该几何体如图所示,故其侧视图为B中的图象.eq\x(命题角度2画几何体的三视图)例3画出如图所示的几何体的三视图.解如图所示.(1)(2)引申探究例3(2)中的组合体改为如下图形,画出其三视图.解图中几何体实际为组合体,下部是三个正方体,上部是一个圆柱,按正方体和圆柱的三视图画法画出该组合体的三视图,如图所示.反思与感悟画三视图的注意事项:(1)务必做到长对正,宽相等,高平齐.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.跟踪训练3如图是同一个圆柱的不同放置,阴影面为正面,分别画出它们的三视图.解三视图如图所示.(1)(2)类型三由三视图还原几何体例4(1)说出下面的三视图表示的几何体的结构特征.解几何体为三棱台,结构特征如下图:(2)根据以下三视图想象物体原形,并画出物体的实物草图.解此几何体上面可以为圆台,下面可以为圆柱,所以实物草图可以如图.反思与感悟(1)通过正视图和侧视图确定是柱体、锥体还是台体.若正视图和侧视图为矩形,则原几何体为柱体;若正视图和侧视图为等腰三角形,则原几何体为锥体;若正视图和侧视图为等腰梯形,则原几何体为台体.(2)通过俯视图确定是多面体还是旋转体,若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.跟踪训练4(1)根据图①②③所示的几何体的三视图,想象其实物模型,画出示意图.解三视图对应的几何体如下图所示.(2)如图所示为长方体木块堆成的几何体的三视图,此几何体共由________块木块堆成.答案4解析由三视图知,由4块木块组成.如图.1.一条直线在平面上的平行投影是()A.直线 B.点C.线段 D.直线或点答案D解析当投影线与该直线平行时直线的平行投影为一个点;当投影线与该直线不平行时,直线的平行投影为一条直线.2.如图,甲、乙、丙是三个立体图形的三视图,与甲、乙、丙相对应的标号是()①长方体;②圆锥;③三棱锥;④圆柱.A.③①② B.①②③C.③②④ D.④②③答案D3.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()答案D解析根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是D.4.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()答案B解析还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.5.一个几何体的三视图如图所示,则其侧视图的面积为________.答案4+eq\r(3)解析依题意得几何体的侧视图面积为22+eq\f(1,2)×2×eq\r(3)=4+eq\r(3).1.理解平行投影和中心投影的概念时,可以从一束光线去照射一个物体所形成的影子,研究两者的不同之处.另外应注意平行投影的性质,尤其注意图形中的直线或线段不平行于投影线的情况.2.空间几何体的三视图可以使我们很好地把握空间几何体的性质,由空间几何体可画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间的相互转化,可以培养我们的空间想象能力.课时作业一、选择题1.下列命题正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段(不与投射线平行)中点的平行投影仍是这条线段投影的中点答案D解析因为当平面图形与投射线平行时,所得投影是线段,故A,B错.又因为点的平行投影仍是点,所以相交直线的投影不可能平行,故C错.由排除法可知,选项D正确.2.如图,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的投影为()答案A解析点D在平面ADD1A1上的投影为点D,点M在平面ADD1A1上的投影为AA1的中点,点N在平面ADD1A1上的投影为DA的中点,连接三点可知A正确.3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④答案D解析在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.4.某几何体的直观图如图所示,下列给出的四个俯视图中正确的是()答案B解析几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可以看见的线段,所以C,D不正确;几何体的上部中间的棱与正视图方向垂直,所以A不正确.故选B.5.如果用□表示1个立方体,用表示2个立方体叠加,用■表示3个立方体叠加,那么图中由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()答案B解析结合已知条件易知B正确.6.一个几何体的三视图如图所示,则该几何体的直观图可以是()答案D解析由俯视图是圆环可排除A,B,C,进一步将三视图还原为几何体,可得选项D.7.如图所示为一个简单几何体的三视图,则其对应的几何体是()答案A解析对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,故不符合题意.故选A.8.已知底面为正方形,侧棱相等的四棱锥S-ABCD的直观图和正视图如图所示,则其侧视图的面积为()A.eq\r(5)B.eq\r(6)C.2eq\r(5)D.2eq\r(6)答案A解析由题意,侧视图与正视图是全等的三角形,面积为eq\f(1,2)×2×eq\r(5)=eq\r(5).二、填空题9.如图所示,桌面上放着一个半球,则它的三视图中,与其他两个视图不同的是________.(填“正视图”“侧视图”或“俯视图”)答案俯视图解析该半球的正视图与侧视图均为半圆,而俯视图是一个圆,所以俯视图与其他两个视图不同.10.若一个正三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.答案2eq\f(8\r(3),3)解析三棱柱的高同侧视图的高,侧视图的宽度恰为底面正三角形的高,故底面边长为eq\f(8\r(3),3).11.已知某组合体的正视图与侧视图相同(其中AB=AC,四边形BCDE为矩形),则该组合体的俯视图可以是图中的________.(把你认为所有正确图象的序号都填上)答案①②③④解析由正视图和侧视图可知几何体为锥体和柱体的组合体.(1)若几何体为圆柱与圆锥的组合体,则俯视图为③;(2)若几何体为棱柱与圆锥的组合体,则俯视图为④;(3)若几何体为棱柱与棱锥的组合体,则俯视图为①;(4)若几何体为圆柱与棱锥的组合体,则俯视图为②.12.已知一正四面体的俯视图如图所示,它是边长为2cm的正方形,则这个正四面体的正视图的面积为________cm2.答案2eq\r(2)解析构造一个棱长为2cm的正方体ABCD-A1B1C1D1(如图),在此正方体中作出一个符合题意的正四面体A-B1CD1,易得该正四面体的正视图是一个底边长为2eq\r(2)cm,高为2cm的等腰三角形,从而可得正视图的面积为2eq\r(2)cm2.三、解答题13.画出如图所示几何体的三视图.解图(1)为正六棱柱,可按棱柱的三视图画法画出;图(2)为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图法画出它们的组合形状.三视图如图所示.四、探究与拓展14.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1 B.eq\r(2)C.eq\f(\r(2)-1,2) D.eq\f(\r(2)+1,2)答案C解析由正方体的俯视图是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西藏农牧学院《作文教学设计》2023-2024学年第一学期期末试卷
- 西藏民族大学《数据库系统课程设计》2023-2024学年第一学期期末试卷
- 2024婚姻解体决策合同:协议离婚与诉讼离婚利弊对比2篇
- 冲洗作业施工方案
- 西北工业大学《大学计算机基础(理工类)》2023-2024学年第一学期期末试卷
- 西北大学《翻译实训(三)》2023-2024学年第一学期期末试卷
- 西安职业技术学院《环境工程CAD实验》2023-2024学年第一学期期末试卷
- 西安邮电大学《生物技术前沿双语》2023-2024学年第一学期期末试卷
- 2024年度担保知识产权质押担保合同(商业秘密保护)3篇
- smw工法桩施工方案
- 8款-组织架构图(可编辑)
- 2022-2024年国际经济与贸易专业人才培养调研报告
- 长春中医药大学模板(经典)课件
- 烟花爆竹批发仓库建设标准(附条文说明)
- 2023-2024学年河南省洛阳市洛龙区、瀍河区数学四年级第一学期期末考试试题含答案
- DB32/T 4478-2023 化工废盐处理过程污染控制技术规范
- WY9故障录波器说明书
- 环卫市场化运营方案PPT
- 设计素描构图
- 菜市场摊贩与管理方合作经营协议书
- 2023春国家开放大学-02154数据库应用技术-期末考试题带答案
评论
0/150
提交评论