版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省长春市九台示范高级中学数学高一下期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3∶2,抽到高三年级学生10人,则该校高二年级学生人数为()A.600 B.800 C.1000 D.12002.设x,y满足约束条件2x-y+2≥0,8x-y-4≤0,x≥0,y≥0,若目标函数z=abx+y(a,A.2 B.4 C.6 D.83.已知向量,,若,则()A. B. C. D.4.一个几何体的三视图如图所示,则这个几何体的表面积为()A.13+5 B.11+5 C.5.在正方体中,E,F,G,H分别是,,,的中点,K是底面ABCD上的动点,且平面EFG,则HK与平面ABCD所成角的正弦值的最小值是()A. B. C. D.6.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若α∥β,mα,nβ,则m∥n B.若α⊥β,mα,则m⊥βC.若α⊥β,mα,nβ,则m⊥n D.若α∥β,mα,则m∥β7.设,若关于的不等式在区间上有解,则()A. B. C. D.8.已知函数在区间内单调递增,且,若,,,则、、的大小关系为()A. B. C. D.9.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为10.在中,角,,所对的边分别为,,,若,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在三棱锥P-ABC中,平面PAB⊥平面ABC,ΔABC是边长为23的等边三角形,其中PA=PB=12.若直线与圆有公共点,则实数的取值范围是__________.13.已知向量a=1,2,b=2,-2,c=14.函数的定义域为A,若时总有为单函数.例如,函数=2x+1()是单函数.下列命题:①函数=(xR)是单函数;②若为单函数,且则;③若f:AB为单函数,则对于任意bB,它至多有一个原象;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中的真命题是.(写出所有真命题的编号)15.若、为单位向量,且,则向量、的夹角为_______.(用反三角函数值表示)16.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设为正项数列的前项和,且满足.(1)求证:为等差数列;(2)令,,若恒成立,求实数的取值范围.18.已知,,,..(1),求x的值;(2)是否存在实数k,使得?若存在求出k的取值范围;若不存在,请说明理由.19.如图是函数的部分图象.(1)求函数的表达式;(2)若函数满足方程,求在内的所有实数根之和;(3)把函数的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图象.若对任意的,方程在区间上至多有一个解,求正数的取值范围.20.已知向量,(1)若,求;(2)若,求.21.已知四棱台中,平面ABCD,四边形ABCD为平行四边形,,,,,E为DC中点.(1)求证:平面;(2)求证:;(3)求三棱锥的高.(注:棱台的两底面相似)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据题意可设抽到高一和高二年级学生人数分别为和,则,继而算出抽到的各年级人数,再根据分层抽样的原理可以推得该校高二年级的人数.【详解】根据题意可设抽到高一和高二年级学生人数分别为和,则,即,所以高一年级和高二年级抽到的人数分别是12人和8人,则该校高二年级学生人数为人.故选:.【点睛】本题考查分层抽样的方法,属于容易题.2、B【解析】
画出不等式组对应的平面区域,平移动直线至1,4时z有最大值8,再利用基本不等式可求a+b的最小值.【详解】原不等式组表示的平面区域如图中阴影部分所示,当直线z=abx+y(a,b>0)过直线2x-y+2=0与直线8x-y-4=0的交点1,4时,目标函数z=abx+y(a,即ab=4,所以a+b≥2ab=4,当且仅当a=b=2时,等号成立.所以【点睛】二元一次不等式组的条件下的二元函数的最值问题,常通过线性规划来求最值,求最值时往往要考二元函数的几何意义,比如3x+4y表示动直线3x+4y-z=0的横截距的三倍,而y+2x-1则表示动点Px,y与3、D【解析】
由共线向量的坐标表示可得出关于实数的方程,解出即可.【详解】向量,,且,,解得.故选:D.【点睛】本题考查利用共线向量的坐标表示求参数的值,解题时要熟悉共线向量坐标之间的关系,考查计算能力,属于基础题.4、B【解析】
三视图可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成.【详解】几何体可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成S=【点睛】已知三视图,求原几何体的表面积或体积是高考必考内容,主要考查空间想象能力,需要熟练掌握常见的几何体的三视图,会识别出简单的组合体.5、A【解析】
根据题意取的中点,可得平面平面,从而可得K在上移动,平面,即可HK与平面ABCD所成角中最小的为【详解】如图,取的中点,连接,由E,F,G,H分别是,,,的中点,所以,,且,则平面平面,若K是底面ABCD上的动点,且平面EFG,则K在上移动,由正方体的性质可知平面,所以HK与平面ABCD所成角中最小的为,不妨设正方体的边长为,在中,.故选:A【点睛】本题考查了求线面角,同时考查了面面平行的判定定理,解题的关键是找出线面角,属于基础题.6、D【解析】
在中,与平行或异面;在中,与相交、平行或;在中,与相交、平行或异面;在中,由线面平行的性质定理得.【详解】由,是两条不同的直线,,是两个不同的平面,知:在中,若,,,则与平行或异面,故错误;在中,若,,则与相交、平行或,故错误;在中,若,,,则与相交、平行或异面,故错误;在中,若,,则由线面平行的性质定理得,故正确.故选.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.7、D【解析】
根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可.【详解】由题意得:当当当综上所述:,选D.【点睛】本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:.有时还需要结合韦达定理进行解决.8、B【解析】
由偶函数的性质可得出函数在区间上为减函数,由对数的性质可得出,由偶函数的性质得出,比较出、、的大小关系,再利用函数在区间上的单调性可得出、、的大小关系.【详解】,则函数为偶函数,函数在区间内单调递增,在该函数在区间上为减函数,,由换底公式得,由函数的性质可得,对数函数在上为增函数,则,指数函数为增函数,则,即,,因此,.【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.9、C【解析】
A.时无最小值;
B.令,由,可得,即,令,利用单调性研究其最值;
C.令,令,利用单调性研究其最值;
D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;
B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;
D.当时,,无最小值,故D不正确.
故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.10、C【解析】
在中,利用正弦定理求出即可.【详解】在中,角,,所对的边分别为,,,已知:,,,利用正弦定理:,解得:.故选C.【点睛】本题考查了正弦定理的应用及相关的运算问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、65π【解析】
本题首先可以通过题意画出图像,然后通过三棱锥的图像性质以及三棱锥的外接球的相关性质来确定圆心的位置,最后根据各边所满足的几何关系列出算式,即可得出结果。【详解】如图所示,作AB中点D,连接PD、CD,在CD上作三角形ABC的中心E,过点E作平面ABC的垂线,在垂线上取一点O,使得PO=OC。因为三棱锥底面是一个边长为23的等边三角形,E所以三棱锥的外接球的球心在过点E的平面ABC的垂线上,因为PO=OC,P、C两点在三棱锥的外接球的球面上,所以O点即为球心,因为平面PAB⊥平面ABC,PA=PB,D为AB中点,所以PD⊥平面ABCCD=CA2-ADPD=P设球的半径为r,则有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面积为S=4πr【点睛】本题考查三棱锥的相关性质,主要考查三棱锥的外接球的相关性质,考查如何通过三棱锥的几何特征来确定三棱锥的外接球与半径,考查推理能力,考查化归与转化思想,是难题。12、【解析】
直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数的取值范围是.【点睛】本题考查直线与圆的位置关系,点到直线距离公式是常用方法.13、1【解析】
由两向量共线的坐标关系计算即可.【详解】由题可得2∵c//∴4λ-2=0故答案为1【点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.14、②③【解析】
命题①:对于函数,设,故和可能相等,也可能互为相反数,即命题①错误;命题②:假设,因为函为单函数,所以,与已知矛盾,故,即命题②正确;命题③:若为单函数,则对于任意,,假设不只有一个原象与其对应,设为,则,根据单函数定义,,又因为原象中元素不重复,故函数至多有一个原象,即命题③正确;命题④:函数在某区间上具有单调性,并不意味着在整个定义域上具有单调性,即命题④错误,综上可知,真命题为②③.故答案为②③.15、.【解析】
设向量、的夹角为,利用平面向量数量积的运算律与定义计算出的值,利用反三角函数可求出的值.【详解】设向量、的夹角为,由平面向量数量积的运算律与定义得,,,因此,向量、的夹角为,故答案为.【点睛】本题考查利用平面向量的数量积计算平面向量所成的夹角,解题的关键就是利用平面向量数量积的定义和运算律,考查运算求解能力,属于中等题.16、【解析】
直接利用长度型几何概型求解即可.【详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)根据与的关系,再结合等差数列的定义,即可证明;(2)由(1)可求出,采用裂项相消法求出,要恒成立,只需即可求出.【详解】(1)由题知:,当得:,解得:当,①②得:,即.是以为首项,为公差的等差数列.(2)由(1)知:所以即.【点睛】本题主要考查与的关系,等差数列的定义,裂项相消法以及恒成立问题的解法的应用,意在考查学生的数学运算能力,属于基础题.18、(1)或.(2)存在;【解析】
(1)由向量平行的坐标运算可求得值;(2)假设存在,由向量的数量积为0求得,再由正弦函数性质及二次函数性质可得所求范围.【详解】(1),,又,,即,又,或.(2),,若,则,,,由,,得存在,使得.【点睛】本题主要考查向量平行和向量垂直的坐标运算,掌握向量运算的坐标表示是解题基础.19、(1)(2)答案不唯一,具体见解析(3)【解析】
(1)根据图像先确定A,再确定,代入一个特殊点再确定.(2)根据(1)的结果结合图像即可解决.(3)根据(1)的结果以及三角函数的变换求出即可解决.【详解】解:(Ⅰ)由图可知:,即,又由图可知:是五点作图法中的第三点,,即.(Ⅱ)因为的周期为,在内恰有个周期.⑴当时,方程在内有个实根,设为,结合图像知,故所有实数根之和为;⑵当时,方程在内有个实根为,故所有实数根之和为;⑶当时,方程在内有个实根,设为,结合图像知,故所有实数根之和为;综上:当时,方程所有实数根之和为;当时,方程所有实数根之和为;(Ⅲ),函数的图象如图所示:则当图象伸长为原来的倍以上时符合题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年护士护理教育项目劳动合同3篇
- 二零二五年生物医药研发与临床试验合同6篇
- 二零二五版智能家居系统集成与装饰设计合同范本3篇
- 二零二五版高标准预制混凝土构件供应合同3篇
- 二零二五版租赁住宅配套设施租赁服务合同2篇
- 二零二五版家居用品经销代理合同范本3篇
- 二零二五版互联网公司高级经理任职及期权激励合同3篇
- 二零二五版便利店员工工作环境与设施改善服务合同3篇
- 湖南储备粮代储合同(2025年度)执行细则范本3篇
- 二零二五版地铁站商业广告位租赁及装修施工合同3篇
- 2024-2025学年成都高新区七上数学期末考试试卷【含答案】
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 2025年浙江杭州市西湖区专职社区招聘85人历年高频重点提升(共500题)附带答案详解
- 《数学广角-优化》说课稿-2024-2025学年四年级上册数学人教版
- “懂你”(原题+解题+范文+话题+技巧+阅读类素材)-2025年中考语文一轮复习之写作
- 2025年景观照明项目可行性分析报告
- 2025年江苏南京地铁集团招聘笔试参考题库含答案解析
- 2025年度爱读书学长参与的读书项目投资合同
- 电力系统分析答案(吴俊勇)(已修订)
- 化学-河北省金太阳质检联盟2024-2025学年高三上学期12月第三次联考试题和答案
- 期末复习试题(试题)-2024-2025学年四年级上册数学 北师大版
评论
0/150
提交评论