版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市虹口中学2025届数学高一下期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,为正三角形,,,则多面体的正视图(也称主视图)是A. B. C. D.2.点关于直线对称的点的坐标是()A. B. C. D.3.不等式的解集是A. B.C.或 D.4.已知的模为1,且在方向上的投影为,则与的夹角为()A.30° B.60° C.120° D.150°5.数列的一个通项公式为()A. B.C. D.6.如果,且,那么下列不等式成立的是()A. B. C. D.7.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.展开式中的常数项为()A.1 B.21 C.31 D.519.在中,若,且,则的形状为()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形10.一个三棱锥内接于球,且,,则球心到平面的距离是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,已知,,,则角__________.12.在锐角△中,,,,则________13.一条河的两岸平行,河的宽度为560m,一艘船从一岸出发到河对岸,已知船的静水速度,水流速度,则行驶航程最短时,所用时间是__________(精确到).14.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).15.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的是较小的两份之和,则最小一份的量为___.16.在中,已知M是AB边所在直线上一点,满足,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,平面,底面为菱形.(1)求证:平面;(2)若为的中点,,求证:平面平面.18.如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“阿当数列”.(1)若数列为“阿当数列”,且,,,求实数的取值范围;(2)是否存在首项为1的等差数列为“阿当数列”,且其前项和满足?若存在,请求出的通项公式;若不存在,请说明理由.(3)已知等比数列的每一项均为正整数,且为“阿当数列”,,,当数列不是“阿当数列”时,试判断数列是否为“阿当数列”,并说明理由.19.设Sn为数列{an}的前n项和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并证明:数列{an+1}为等比数列;(1)设bn=log1(a3n+1),数列{}的前n项和为Tn,求证:1≤18Tn<1.20.已知点,,曲线任意一点满足.(1)求曲线的方程;(2)设点,问是否存在过定点的直线与曲线相交于不同两点,无论直线如何运动,轴都平分,若存在,求出点坐标,若不存在,请说明理由.21.已知直线(1)若直线过点,且.求直线的方程.(2)若直线过点A(2,0),且,求直线的方程及直线,,轴围成的三角形的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
为三角形,,平面,
且,则多面体的正视图中,
必为虚线,排除B,C,
说明右侧高于左侧,排除A.,故选D.2、A【解析】
设点关于直线对称的点为,根据斜率关系和中点坐标公式,列出方程组,即可求解.【详解】由题意,设点关于直线对称的点为,则,解得,即点关于直线对称的点为,故选A.【点睛】本题主要考查了点关于直线的对称点的求解,其中解答中熟记点关于直线的对称点的解法是解答的关键,着重考查了运算与求解能力,属于基础题.3、B【解析】试题分析:∵,∴,即,∴不等式的解集为.考点:分式不等式转化为一元二次不等式.4、A【解析】
根据投影公式,直接得到结果.【详解】,.故选A.【点睛】本题考查了投影公式,属于简单题型.5、C【解析】
利用特殊值,将代入四个选项即可排除错误选项.【详解】将代入四个选项,可得A中B中D中只有C中所以排除ABD选项故选:C【点睛】本题考查了根据几个项选择数列的通项公式,特殊值法是解决此类问题的简单方法,属于基础题.6、D【解析】
由,且,可得.再利用不等式的基本性质即可得出,.【详解】,且,.,,因此.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.7、D【解析】
先将化为,根据函数图像的平移原则,即可得出结果.【详解】因为,所以只需将的图象向右平移个单位.【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.8、D【解析】常数项有三种情况,都是次,或者都是次,或者都是二次,故常数项为9、D【解析】
由两角和的正切公式求得,从而得,由二倍角公式求得,再求得,注意检验符合题意,可判断三角形形状.【详解】,∴,∴,由,即.∴或.当时,,无意义.当时,,此时为正三角形.故选:D.【点睛】本题考查三角形形状的判断,考查两角和的正切公式和二倍角公式,根据三角公式求出角是解题的基本方法.10、D【解析】由题意可得三棱锥的三对对棱分别相等,所以可将三棱锥补成一个长方体,如图所示,该长方体的外接球就是三棱锥的外接球,长方体共顶点的三条面对角线的长分别为,设球的半径为,则有,在中,由余弦定理得,再由正弦定理得为外接圆的半径),则,因此球心到平面的距离,故选D.点睛:本题主要考查了球的组合体问题,本题的解答中采用割补法,考虑到三棱锥的三对对棱相等,所以可得三棱锥补成一个长方体,长方体的外接球就是三棱锥的外接球,求出求出球的半径,进而求解距离,其中正确认识组合体的特征和恰当补形时解答的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先由正弦定理得到角A的大小,再由三角形内角和为得到结果.【详解】根据三角形正弦定理得到:,故得到或,因为故得到故答案为.【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.12、【解析】
由正弦定理,可得,求得,即可求解,得到答案.【详解】由正弦定理,可得,所以,又由△为锐角三角形,所以.故答案为:.【点睛】本题主要考查了正弦定理得应用,其中解答中熟记正弦定理,准确计算是解答的关键,着重考查了计算能力,属于基础题.13、6【解析】
先确定船的方向,再求出船的速度和时间.【详解】因为行程最短,所以船应该朝上游的方向行驶,所以船的速度为km/h,所以所用时间是.故答案为6【点睛】本题主要考查平面向量的应用,意在考查学生对该知识的理解掌握水平,属于基础题.14、1.76【解析】
将这6位同学的身高按照从低到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.【考点】中位数的概念【点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.15、【解析】
设此等差数列为{an},公差为d,则(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份为a1,故答案为.16、3【解析】
由M在AB边所在直线上,则,又,然后将,都化为,即可解出答案.【详解】因为M在直线AB上,所以可设,
可得,即,又,则由与不共线,所以,解得.故答案为:3【点睛】本题考查向量的减法和向量共线的利用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)证明见解析【解析】
(1)根据底面为菱形得到,根据线面垂直的性质得到,再根据线面垂直的判定即可得到平面.(2)首先利用线面垂直的判定证明平面,再利用面面垂直的判定证明平面平面即可.【详解】(1)因为底面为菱形,所以.平面,平面,所以.平面.(2)因为底面为菱形,且所以为等边三角形.因为为的中点,所以.又因为,所以.平面,平面,所以.平面.因为平面,所以平面平面.【点睛】本题第一问考查线面垂直的判定和性质,第二问考查面面垂直的判定,属于中档题.18、(1);(2)不存在,理由见详解;(3)见详解.【解析】
(1)根据题意,得到,求解即可得出结果;(2)先假设存在等差数列为“阿当数列”,设公差为,则,根据等差数列求和公式,结合题中条件,得到,即对任意都成立,判断出,推出矛盾,即可得出结果;(3)设等比数列的公比为,根据为“阿当数列”,推出在数列中,为最小项;在数列中,为最小项;得到,,再由数列每一项均为正整数,得到,或,;分别讨论,和,两种情况,结合数列的增减性,即可得出结果.【详解】(1)由题意可得:,,即,解得或;所以实数的取值范围是;(2)假设存在等差数列为“阿当数列”,设公差为,则,由可得:,又,所以对任意都成立,即对任意都成立,因为,且,所以,与矛盾,因此,不存在等差数列为“阿当数列”;(3)设等比数列的公比为,则,且每一项均为正整数,因为为“阿当数列”,所以,所以,;因为,即在数列中,为最小项;同理,在数列中,为最小项;由为“阿当数列”,只需,即,又因为数列不是“阿当数列”,所以,即,由数列每一项均为正整数,可得:,所以,或,;当,时,,则,令,则,所以,即数列为递增数列,所以,因为,所以对任意,都有,即数列是“阿当数列”;当,时,,则,显然数列是递减数列,,故数列不是“阿当数列”;综上,当时,数列是“阿当数列”;当时,数列不是“阿当数列”.【点睛】本题主要考查数列的综合,熟记等差数列与等比数列的通项公式与求和公式,以及数列的性质即可,属于常考题型.19、(1)见解析;(1)见解析【解析】
(1)可令求得的值;再由数列的递推式,作差可得,可得数列为首项为1,公比为1的等比数列;(1)由(1)求得,,再由数列的裂项相消求和,可得,再由不等式的性质即可得证.【详解】(1)当时,,即,∴,当时,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴数列是首项为,公比为1的等比数列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【点睛】本题主要考查了数列的递推式的运用,考查等比数列的定义和通项公式、求和公式的运用,考查数列的裂项相消求和,化简运算能力,属于中档题.20、(1);(2)【解析】
(1)设,再根据化简求解方程即可.(2)设过定点的直线方程为,根据轴平分可得.再联立直线与圆的方程,化简利用韦达定理求解中参数的关系,进而求得定点即可.【详解】(1)设,因为,故,即,整理可得.(2)当直线与轴垂直,且在圆内时,易得关于轴对称,故必有轴平分.当直线斜率存在时,设过定点的直线方程为.设.联立,.因为无论直线如何运动,轴都平分,故,即,所以,.所以代入韦达定理有,化简得.故,恒过定点.即.【点睛】本题主要考查了轨迹方程的求解方法以及联立直线与圆的方程,利用韦达定理代入题中所给的关系式,化简求直线中参数的关系求得定点的问题.属于难题.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《少儿理财活动案例》课件
- 单位管理制度集粹选集【人力资源管理】十篇
- 单位管理制度汇编大全【人事管理篇】
- 单位管理制度合并选集人员管理篇
- 《巫婆的暑假》课件
- 单位管理制度分享大合集【人员管理篇】十篇
- 单位管理制度范例汇编【人员管理】十篇
- 单位管理制度呈现大全【人员管理篇】
- 《行政职业能力测验》2022年公务员考试民和回族土族自治县预测试题含解析
- 《基层干部管理》课件
- 穴位贴敷护理培训
- 腰椎间盘突出症护理查房课件
- 建德海螺二期施工组织设计
- 山东省菏泽市2023-2024学年高一上学期期末测试物理试题(解析版)
- 2024年学校后勤日用品采购合同范本2篇
- DB45T 2866-2024 灵芝菌种制备技术规程
- 2024年度区块链软件产品知识产权共享协议3篇
- 人教版九年级上学期物理期末复习(压轴60题28大考点)
- 2024年江苏省普通高中学业水平测试小高考生物、地理、历史、政治试卷及答案(综合版)
- 浙江省杭州市西湖区2023-2024学年六年级上学期期末语文试卷
- 四层电梯控制系统设计-(共38页)
评论
0/150
提交评论