2025届福建省福州市闽侯第六中学数学高一下期末学业水平测试试题含解析_第1页
2025届福建省福州市闽侯第六中学数学高一下期末学业水平测试试题含解析_第2页
2025届福建省福州市闽侯第六中学数学高一下期末学业水平测试试题含解析_第3页
2025届福建省福州市闽侯第六中学数学高一下期末学业水平测试试题含解析_第4页
2025届福建省福州市闽侯第六中学数学高一下期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省福州市闽侯第六中学数学高一下期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件 B.B和C为互斥事件C.C与D是对立事件 D.B与D为互斥事件2.已知等差数列的前项和为,且,则满足的正整数的最大值为()A.16 B.17 C.18 D.193.设直线l1:3x+2ay-5=0,l2:3a-1x-ay-2=0,若l1与A.-16 B.0或4.若实数满足约束条件,则的最大值为()A.9 B.7 C.6 D.35.已知向量,若,则()A.1 B. C.2 D.36.直线x-2y+2=0关于直线x=1对称的直线方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=07.在中,内角所对的边分别为,若,且,则的形状是()A.锐角三角形 B.钝角三角形 C.等腰直角三角形 D.不确定8.设函数,其中为已知实常数,,则下列命题中错误的是()A.若,则对任意实数恒成立;B.若,则函数为奇函数;C.若,则函数为偶函数;D.当时,若,则().9.已知点,,若直线过原点,且、两点到直线的距离相等,则直线的方程为()A.或 B.或C.或 D.或10.与直线平行,且与直线交于轴上的同一点的直线方程是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列中,则此数列的前项和_________.12.已知中,,则面积的最大值为_____13.直线与圆的位置关系是______.14.设为三条不同的直线,为两个不同的平面,给出下列四个判断:①若则;②若是在内的射影,,则;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;④若球的表面积扩大为原来的16倍,则球的体积扩大为原来的32倍;其中正确的为___________.15.如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是_____.16.已知直线与轴、轴相交于两点,点在圆上移动,则面积的最大值和最小值之差为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆经过点,且圆心在直线:上.(1)求圆的方程;(2)过点的直线与圆交于两点,问在直线上是否存在定点,使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.18.已知函数,且的解集为.(1)求函数的解析式;(2)解关于的不等式,;(3)设,若对于任意的都有,求的最小值.19.等差数列的前项和为,数列是等比数列,满足,,,,.(1)求数列和的通项公式;(2)令,求数列的前项和.20.已知,a,b,c分别为角A,B,C的对边,且,,,求角A的大小.21.如图,直三棱柱中,点是棱的中点,点在棱上,已知,,(1)若点在棱上,且,求证:平面平面;(2)棱上是否存在一点,使得平面证明你的结论。

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据互斥事件和对立事件的概念,进行判定,即可求解,得到答案.【详解】由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B为不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环”可能发生,所以事件C和D为不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D为互斥事件,故选D.【点睛】本题主要考查了互斥事件和对立事件的概念及判定,其中解答中熟记互斥事件和对立事件的概念,准确判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、C【解析】

先由,得到,,,公差大于零,再由数列的求和公式,即可得出结果.【详解】由得,,,,所以公差大于零.又,,,故选C.【点睛】本题主要考查等差数列的应用,熟记等差数列的性质与求和公式即可,属于常考题型.3、B【解析】

通过两条直线平行的关系,可建立关于a的方程,解方程求得结果。【详解】l1//解得:a=0或-本题正确选项:B【点睛】本题考察直线位置关系问题。关键是通过两直线平行,得到:A14、A【解析】由约束条件作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最大,有最大值为,故选A.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5、B【解析】

可求出,根据即可得出,进行数量积的坐标运算即可求出x.【详解】;∵;∴;解得.故选B.【点睛】本题考查向量垂直的充要条件,向量坐标的减法和数量积运算,属于基础题.6、A【解析】

所求直线的斜率与直线x-2y+2=0的斜率互为相反数,且在x=1处有公共点,求解即可。【详解】直线x-2y+2=0与直线x=1的交点为P1,3因为直线x-2y+2=0的斜率为12,所以所求直线的斜率为-故所求直线方程为y-32=-故答案为A.【点睛】本题考查了直线的斜率,直线的方程,直线关于直线的对称问题,属于基础题。7、C【解析】

通过正弦定理可得可得三角形为等腰,再由可知三角形是直角,于是得到答案.【详解】因为,所以,所以,即.因为,所以,又因为,所以,所以,故的形状是等腰直角三角形.【点睛】本题主要考查利用正弦定理判断三角形形状,意在考查学生的分析能力,计算能力,难度中等.8、D【解析】

利用两角和的余弦公式化简表达式.对于A选项,将化简得到的表达式代入上述表达式,可判断出A选项为真命题.对于B选项,将化简得到的表达式代入上述表达式,可判断出为奇函数,由此判断出B选项为真命题.对于C选项,将化简得到的表达式代入上述表达式,可判断出为偶函数,由此判断出C选项为真命题.对于D选项,根据、,求得的零点的表达式,由此求得(),进而判断出D选项为假命题.【详解】.不妨设.为已知实常数.若,则得;若,则得.于是当时,对任意实数恒成立,即命题A是真命题;当时,,它为奇函数,即命题B是真命题;当时,,它为偶函数,即命题C是真命题;当时,令,则,上述方程中,若,则,这与矛盾,所以.将该方程的两边同除以得,令(),则,解得().不妨取,(且),则,即(),所以命题D是假命题.故选:D【点睛】本小题主要考查两角和的余弦公式,考查三角函数的奇偶性,考查三角函数零点有关问题的求解,考查同角三角函数的基本关系式,属于中档题.9、A【解析】

分为斜率存在和不存在两种情况,根据点到直线的距离公式得到答案.【详解】当斜率不存在时:直线过原点,验证满足条件.当斜率存在时:直线过原点,设直线为:即故答案选A【点睛】本题考查了点到直线的距离公式,忽略斜率不存在的情况是容易犯的错误.10、A【解析】

直线交于轴上的点为,与直线平行得到斜率,根据点斜式得到答案.【详解】与直线平行直线交于轴上的点为设直线方程为:代入交点得到即故答案选A【点睛】本题考查了直线的平行关系,直线与坐标轴的交点,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、180【解析】由,,可知.12、【解析】

设,则,根据面积公式得,由余弦定理求得代入化简,由三角形三边关系求得,由二次函数的性质求得取得最大值.【详解】解:设,则,根据面积公式得,由余弦定理可得,可得:,由三角形三边关系有:,且,解得:,故当时,取得最大值,故答案为:.【点睛】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.13、相交【解析】

由直线系方程可得直线过定点,进而可得点在圆内部,即可得到位置关系.【详解】化直线方程为,令,解得,所以直线过定点,又圆的圆心坐标为,半径,而,所以点在圆内部,故直线与圆的位置关系是相交.故答案为:相交.【点睛】本题考查直线与圆位置关系的判断,考查直线系方程的应用,属于基础题.14、①②【解析】

对四个命题分别进行判断即可得到结论【详解】①若,垂足为,与确定平面,,则,,则,,则,故,故正确②若,是在内的射影,,根据三垂线定理,可得,故正确③底面是等边三角形,侧面都是有公共顶点的等腰三角形的三棱锥是正三棱锥,故不正确④若球的表面积扩大为原来的倍,则半径扩大为原来的倍,则球的体积扩大为原来的倍,故不正确其中正确的为①②【点睛】本题主要考查了空间中直线与平面之间的位置关系、球的体积等知识点,数量掌握各知识点然后对其进行判断,较为基础。15、10.【解析】

由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体的体积为120,所以,因为为的中点,所以,由长方体的性质知底面,所以是三棱锥的底面上的高,所以三棱锥的体积.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.16、15【解析】

解:设作出与已知直线平行且与圆相切的直线,

切点分别为,如图所示

则动点C在圆上移动时,若C与点重合时,

△ABC面积达到最小值;而C与点重合时,△ABC面积达到最大值

∵直线3x+4y−12=0与x轴、y轴相交于A(4,0)、B(0,3)两点

可得∴△ABC面积的最大值和最小值之差为

其中分别为点、点到直线AB的距离

∵是圆(x−5)2+(y−6)2=9的两条平行切线与圆的切点

∴点、点到直线AB的距离之差等于圆的直径,即

因此△ABC面积的最大值和最小值之差为

故答案为:15三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)在直线上存在定点,使得恒成立,详见解析【解析】

(1)求出弦中垂线方程,由中垂线和直线相交得圆心坐标,再求出圆半径,从而得圆标准方程;(2)直线斜率存在时,设方程为,代入圆的方程,得的一元二次方程,同时设交点为由韦达定理得,假设定点存在,设其为,由求得,再验证所作直线斜率不存在时,点也满足题意.【详解】(1)的中点为,∴的垂直平分线的斜率为,∴的垂直平分线的方程为,∴的垂直平分线与直线交点为圆心,则,解得,又.∴圆的方程为.(2)当直线的斜率存在时,设直线的斜率为,则过点的直线方程为,故由,整理得,设,设,则,,,即,当斜率不存在时,成立,∴在直线上存在定点,使得恒成立【点睛】本题考查求圆的标准方程,考查与圆有关的定点问题.求圆的标准方程可先求出圆心坐标和圆的半径,然后得标准方程,注意圆心一定在弦的中垂线上.定点问题,通常用设而不求思想,即设直线方程与圆方程联立消元后得一元二次方程,设直线与圆的交点坐标为,由韦达定理得,然后设定点坐标如本题,再由条件求出,若不能求出说明定点不存在,如能求出值,注意验证直线斜率不存在时,此定点也满足题意.18、(1)(2)答案不唯一,具体见解析(3)1【解析】

(1)根据韦达定理即可。(2)分别对三种情况进行讨论。(3)带入,分别对时三种情况讨论。【详解】(1)的解集为可得1,2是方程的两根,则,(2)时,时,时,(3),为上的奇函数当时,当时,,则函数在上单调递增,在上单调递减,且时,,在时,取得最大值,即;当时,,则函数在上单调递减,在上单调递减,且时,,在时,取得最小值,即;对于任意的都有则等价于或()则的最小值为1【点睛】本题主要考查了含参数的一元二次不等式,以及绝对值不等式,在解决含参数的不等式时首先要对参数进行讨论。本题属于难题。19、(1),;(2)【解析】

(1)由是等差数列,,,可求出,由是等比数列,,,,可求出;(2)将和的通项公式代入,则,利用裂项相消求和法可求出.【详解】(1),,,解得.又,,.(2)由(1),得【点睛】本题考查了等差数列和等比数列的通项公式的求法,考查了用裂项相消求数列的前项和,属于中档题.20、【解析】

由正弦定理得,即得,再利用余弦定理求解.【详解】因为在三角形ABC中,由正弦定理得.又因为,所以得,由余弦定理得.又三角形内角在.故角A为.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论