版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆维吾尔自治区乌鲁木齐市高一数学第二学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将所有的正奇数按以下规律分组,第一组:1;第二组:3,5,7;第三组:9,11,13,15,17;…表示n是第i组的第j个数,例如,,则()A. B. C. D.2.已知圆,直线,点在直线上.若存在圆上的点,使得(为坐标原点),则的取值范围是A. B. C. D.3.等比数列的各项均为正数,且,则()A. B. C. D.4.已知,则比多了几项()A.1 B. C. D.5.若实数,满足约束条件则的取值范围为()A. B. C. D.6.过正方形的顶点,作平面,若,则平面和平面所成的锐二面角的大小是A. B.C. D.7.在中,是的中点,是上的一点,且,若,则实数()A.2 B.3 C.4 D.58.在中,角A,B,C所对的边分别为a,b,c,若,,则是()A.纯角三角形 B.等边三角形C.直角三角形 D.等腰直角三角形9.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A. B. C. D.10.下列各角中,与角终边相同的角是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,若,则______12.已知等差数列的公差为2,若成等比数列,则________.13.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一个周期的图象,则f(1)=__________.14.两等差数列{an}和{bn}前n项和分别为Sn,Tn,且,则=__________.15.已知锐角、满足,,则的值为______.16.如图,正方形中,分别为边上点,且,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司在若干地区各投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元)12345销售收益(单位:万元)2337由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.(参考公式:)18.锐角三角形的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,,求面积.19.如图,在四棱锥中,底面是菱形,底面.(Ⅰ)证明:;(Ⅱ)若,求二面角的余弦值.20.正四棱锥S-ABCD的底面边长为2,侧棱长为x.(1)求出其表面积S(x)和体积V(x);(2)设,求出函数的定义域,并判断其单调性(无需证明).21.如图,是以向量为边的平行四边形,又,试用表示.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由等差数列求和公式及进行简单的合情推理可得:2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,得解.【详解】由已知有第n组有2n-1个连续的奇数,则前n组共有个连续的奇数,又2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,即2019=(32,49),故选:C.【点睛】本题考查归纳推理,解题的关键是根据等差数列求和公式分析出规律,再结合数列的性质求解,属于中等题.2、B【解析】
根据条件若存在圆C上的点Q,使得为坐标原点),等价即可,求出不等式的解集即可得到的范围【详解】圆O外有一点P,圆上有一动点Q,在PQ与圆相切时取得最大值.
如果OP变长,那么可以获得的最大值将变小.可以得知,当,且PQ与圆相切时,,
而当时,Q在圆上任意移动,存在恒成立.
因此满足,就能保证一定存在点Q,使得,否则,这样的点Q是不存在的,
点在直线上,,即
,
,
计算得出,,
的取值范围是,
故选B.考点:正弦定理、直线与圆的位置关系.3、D【解析】
本题首先可根据数列是各项均为正数的等比数列以及计算出的值,然后根据对数的相关运算以及等比中项的相关性质即可得出结果.【详解】因为等比数列的各项均为正数,,所以,,所以,故选D.【点睛】本题考查对数的相关运算以及等比中项的相关性质,考查的公式为以及在等比数列中有,考查计算能力,是简单题.4、D【解析】
由写出,比较两个等式得多了几项.【详解】由题意,则,那么:,又比多了项.故选:D.【点睛】本题考查对函数的理解和带值计算问题,属于基础题.5、A【解析】
的几何意义为点与点所在直线的斜率,根据不等式表示的可行域,可得出取值范围.【详解】的几何意义为点与点所在直线的斜率.画出如图的可行域,当直线经过点时,;当直线经过点时,.的取值范围为,故选A.【点睛】本题考查了不等式表示的可行域的画法,以及目标函数为分式时求取值范围的方法.6、B【解析】法一:建立如图(1)所示的空间直角坐标系,不难求出平面APB与平面PCD的法向量分别为n1=(0,1,0),n2=(0,1,1),故平面ABP与平面CDP所成二面角的余弦值为=,故所求的二面角的大小是45°.法二:将其补成正方体.如图(2),不难发现平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小为45°.7、C【解析】
选择以作为基底表示,根据变形成,即可求解.【详解】在中,根据平行四边形法则,有,是的中点,,由题:,即,,,所以,所以解得:故选:C【点睛】此题考查平面向量的线性运算,根据平面向量基本定理处理系数关系.8、B【解析】
利用正弦定理结合条件,得到,再由,结合余弦定理,得到,从而得到答案.【详解】在中,由正弦定理得,而,所以得到,即,为的内角,所以,因为,所以,由余弦定理得.为的内角,所以,所以,为等边三角形.故选:B.【点睛】本题考查正弦定理和余弦定理判断三角形形状,属于简单题.9、D【解析】
设OA=1,则AB,分别求出三个区域的面积,由测度比是面积比得答案.【详解】设OA=1,则AB,,以AB中点为圆心的半圆的面积为,以O为圆心的大圆面积的四分之一为,以AB为弦的大圆的劣弧所对弓形的面积为π﹣1,黑色月牙部分的面积为π﹣(π﹣1)=1,图Ⅲ部分的面积为π﹣1.设整个图形的面积为S,则p1,p1,p3.∴p1=p1>p3,故选D.【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.10、B【解析】
给出具体角度,可以得到终边相同角的表达式.【详解】角终边相同的角可以表示为,当时,,所以答案选择B【点睛】判断两角是否是终边相同角,即判断是否相差整数倍.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据向量垂直的坐标表示列出等式,求出,再利用二倍角公式、平方关系即可求出.【详解】由得,,解得,.【点睛】本题主要考查了向量垂直的坐标表示以及二倍角公式、平方关系的应用.12、【解析】
利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,
∴(a1+4)1=a1(a1+2),
∴a1=-8,
∴a1=-2.
故答案为-2..【点睛】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..13、2【解析】
由三角函数图象,利用三角函数的性质,求得函数的解析式,即可求解的值,得到答案.【详解】由三角函数图象,可得,由,得,于是,又,即,解得,所以,则.【点睛】本题主要考查了由三角函数的部分图象求解函数的解析式及其应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】数列{an}和{bn}为等差数列,所以.点睛:等差数列的常考性质:{an}是等差数列,若m+n=p+q,则.15、【解析】
计算出角的取值范围,利用同角三角函数的平方关系计算出的值和的值,然后利用两角差的余弦公式可计算出的值.【详解】由题意可知,,,,则,.因此,.故答案为.【点睛】本题考查利用两角差的余弦公式求值,同时也考查了同角三角函数的平方关系求值,解题时要明确所求角与已知角之间的关系,合理利用公式是解题的关键,考查运算求解能力,属于中等题.16、(或)【解析】
先设,根据题意得到,再由两角和的正切公式求出,得到,进而可得出结果.【详解】设,则所以,所以,因此.故答案为【点睛】本题主要考查三角恒等变换的应用,熟记公式即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)5;(3)空白栏中填5,【解析】
(1)根据频率等于小长方形的面积以及频率和为,得到关于的等式,求解出即可;(2)根据各组数据的组中值与频率的乘积之和得到对应的销售收益的平均值;(3)先填写空白栏数据,然后根据所给数据计算出,即可求解出回归直线方程.【详解】(1)设各小长方形的宽度为.由频率分布直方图中各小长方形的面积总和为1,可知,解得.故图中各小长方形的宽度为2.(2)由(1)知各小组依次是,其中点分别为对应的频率分别为故可估计平均值为.(3)由(2)可知空白栏中填5.由题意可知,,,根据公式,可求得,.所以所求的回归直线方程为.【点睛】本题考查频率分布直方图的实际应用以及回归直线方程的求法,难度一般.(1)频率分布直方图中,小矩形的面积代表该组数据的频率,所有小矩形面积之和为;(2)求解回归直线方程时,先求解出,然后根据回归直线方程过样本点的中心再求解出.18、(1),(2)【解析】
(1)利用三角函数的和差公式化简已知等式可得,结合为锐角可得的值.(2)由余弦定理可得,解得的值,根据三角形的面积公式即可求解.【详解】(1)∵,∴∵∴可得:∵A,C为锐角,∴,可得:(2)∵∴由余弦定理,可得:,即,解得:或3,因为为锐角三角形,所以需满足所以所以的面积为【点睛】本题主要考查了三角函数恒等变换及余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.19、(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)由底面推出,由菱形的性质推出,即可推出平面从而得到;(Ⅱ)作,交的延长线于,连接,则二面角的平面角是,由已知条件求出AD,进而求出AE、PD,即可求得.【详解】(Ⅰ)证明:连接,∵底面,底面,∴.∵四边形是菱形,∴.又∵,平面,平面,∴平面,∴.(Ⅱ)作,交的延长线于,连接.由于,于是平面,平面,,所以二面角的平面角是.设“”,且底面是菱形,,,,∴.【点睛】本题考查线面垂直、线线垂直的证明,二面角的余弦值,属于中档题.20、(1),;(2)x>,是减函数.【解析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租房合同协议书格式英文版英文版示例
- 文化墙建设招标文件范例
- 木制品原材料购销合同
- 塑料袋购销合同条款
- 特许加盟授权协议
- 交通道路工程设计勘察招标说明会
- 抹灰工程劳务合作
- 无房产证房屋交易合同
- 房屋居间合同买卖模板
- 家具购销合同样式设计
- 记录我的一天(教案)-2024-2025学年一年级上册数学北师大版
- 部编 2024版历史七年级上册期末复习(全册)教案
- 工程管理毕业论文范文(三篇)
- 新能源发电技术 电子课件 2.5 可控核聚变及其未来利用方式
- 五年级上册英语单词表外研
- 科室护理品牌
- Module 9 Unit2教学设计2024-2025学年外研版英语九年级上册
- 有趣的机械结构智慧树知到答案2024年青岛滨海学院
- 济柴190系列柴油机使用维护手册
- 2024年军队文职统一考试《专业科目》管理学真题及答案解析
- 2024年网格员述职报告
评论
0/150
提交评论