四川雅安中学2025届高一数学第二学期期末质量检测试题含解析_第1页
四川雅安中学2025届高一数学第二学期期末质量检测试题含解析_第2页
四川雅安中学2025届高一数学第二学期期末质量检测试题含解析_第3页
四川雅安中学2025届高一数学第二学期期末质量检测试题含解析_第4页
四川雅安中学2025届高一数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川雅安中学2025届高一数学第二学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=sinA.1 B.2 C.3 D.22.已知向量,,则()A.-1 B.-2 C.1 D.03.设直线与直线的交点为,则到直线的距离最大值为()A. B. C. D.4.供电部门对某社区1000位居民2019年4月份人均用电情况进行统计后,按人均用电量分为[0,10),[10,20),[20,30),[40,50]五组,整理得到如下的频率分布直方图,则下列说法错误的是()A.4月份人均用电量人数最多的一组有400人B.4月份人均用电量不低于20度的有500人C.4月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[30,40)一组的概率为15.设,,若是与的等比中项,则的最小值为()A. B. C.3 D.6.数列的通项,其前项之和为,则在平面直角坐标系中,直线在轴上的截距为()A.-10 B.-9 C.10 D.97.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy8.已知向量,,,若,则()A.1 B.2 C.3 D.49.若非零实数满足,则下列不等式成立的是()A. B. C. D.10.若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,则______.12.已知圆锥底面半径为1,高为,则该圆锥的侧面积为_____.13.已知向量,,且,点在圆上,则等于.14.某班级有50名学生,现用系统抽样的方法从这50名学生中抽出10名学生,将这50名学生随机编号为1~5号,并按编号顺序平均分成10组(1~5号,15.若数列的前项和为,则该数列的通项公式为______.16.已知中,,且,则面积的最大值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列中,,.(1)求证:数列为等差数列,求数列的通项公式;(2)若数列的前项和为,求证:.18.如图几何体中,底面为正方形,平面,,且.(1)求证:平面;(2)求与平面所成角的大小.19.已知函数,且函数是偶函数,设(1)求的解析式;(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;(3)若方程有三个不同的实数根,求实数的取值范围.20.如图,在三棱锥中,垂直于平面,.求证:平面.21.已知直线与平行.(1)求实数的值:(2)设直线过点,它被直线,所截的线段的中点在直线上,求的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

对sin(x+π3【详解】∵f(x)=sin∴f(x)【点睛】考查三角恒等变换、辅助角公式及余弦函数的最值.2、C【解析】

根据向量数量积的坐标运算,得到答案.【详解】向量,,所以.故选:C.【点睛】本题考查向量数量积的坐标运算,属于简单题.3、A【解析】

先求出的坐标,再求出直线所过的定点,则所求距离的最大值就是的长度.【详解】由可以得到,故,直线的方程可整理为:,故直线过定点,因为到直线的距离,当且仅当时等号成立,故,故选A.【点睛】一般地,若直线和直线相交,那么动直线()必过定点(该定点为的交点).4、C【解析】

根据频率分布直方图逐一计算分析.【详解】A:用电量最多的一组有:0.04×10×1000=400人,故正确;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正确;C:人均用电量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故错误;D:用电量在[30,40)的有:0.01×10×1000=100人,所以P=100故选C.【点睛】本题考查利用频率分布直方图求解相关量,难度较易.频率分布直方图中平均数的求法:每一段的组中值×频率5、C【解析】

先由题意求出,再结合基本不等式,即可求出结果.【详解】因为是与的等比中项,所以,故,因为,,所以,当且仅当,即时,取等号;故选C【点睛】本题主要考查基本不等式的应用,熟记基本不等式即可,属于常考题型.6、B【解析】试题分析:因为数列的通项公式为,所以其前项和为,令,所以直线方程为,令,解得,即直线在轴上的截距为,故选B.考点:数列求和及直线方程.7、D【解析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.8、A【解析】

利用坐标表示出,根据垂直关系可知,解方程求得结果.【详解】,,解得:本题正确选项:【点睛】本题考查向量垂直关系的坐标表示,属于基础题.9、C【解析】

对每一个不等式逐一分析判断得解.【详解】A,不一定小于0,所以该选项不一定成立;B,如果a<0,b<0时,不成立,所以该选项不一定成立;C,,所以,所以该不等式成立;D,不一定小于0,所以该选项不一定成立.故选:C【点睛】本题主要考查不等式性质和比较法比较实数的大小,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、A【解析】试题分析:,故选A.考点:两角和与差的正切公式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意,则.12、【解析】

由已知求得母线长,代入圆锥侧面积公式求解.【详解】由已知可得r=1,h=,则圆锥的母线长l=,∴圆锥的侧面积S=πrl=2π.故答案为:2π.【点睛】本题考查圆锥侧面积的求法,侧面积公式S=πrl.13、【解析】试题分析:因为且在圆上,所以,解得,所以.考点:向量运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.14、33【解析】试题分析:因为是从50名学生中抽出10名学生,组距是5,∵第三组抽取的是13号,∴第七组抽取的为13+4×5=33.考点:系统抽样15、【解析】

由,可得出,再令,可计算出,然后检验是否满足在时的表达式,由此可得出数列的通项公式.【详解】由题意可知,当时,;当时,.又不满足.因此,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但要对是否满足进行检验,考查运算求解能力,属于中等题.16、【解析】

先利用正弦定理求出c=2,分析得到当点在的垂直平分线上时,边上的高最大,的面积最大,利用余弦定理求出,最后求面积的最大值.【详解】由可得,由正弦定理,得,故,当点在的垂直平分线上时,边上的高最大,的面积最大,此时.由余弦定理知,,即,故面积的最大值为.故答案为【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】

(1)结合,构造数列,证明得到该数列为等差数列,结合等差通项数列计算方法,即可.(2)运用裂项相消法,即可.【详解】(1)由,(即),可得,所以,所以数列是以为首项,以2为公差的等差数列,所以,即.(2),所以,因为,所以.【点睛】本道题考查了等差数列通项计算方法和裂项相消法,难度一般.18、(1)见解析(2)【解析】

(1)由,,结合面面平行判定定理可证得平面平面,根据面面平行的性质证得结论;(2)连接交于点,连接,利用线面垂直的判定定理可证得平面,从而可知所求角为,在中利用正弦求得结果.【详解】(1)四边形为正方形又平面平面又,平面平面平面,平面平面平面平面(2)连接交于点,连接平面,平面又四边形为正方形平面,平面即为与平面所成角且又即与平面所成角为:【点睛】本题考查线面平行的证明、直线与平面所成角的求解,涉及到面面平行的判定与性质、线面垂直的判定与性质的应用;求解直线与平面所成角的关键是能够通过垂直关系将所求角放入直角三角形中来进行求解.19、(1);(2);(3).【解析】

(1)对称轴为,对称轴为,再根据图像平移关系求解;(2)分离参数,转化为求函数的最值;(3)令为整体,转化为二次函数根的分布问题求解.【详解】(1)函数的对称轴为,因为向左平移1个单位得到,且是偶函数,所以,所以.(2)即又,所以,则因为,所以实数的取值范围是.(3)方程即化简得令,则若方程有三个不同的实数根,则方程必须有两个不相等的实数根,且或,令当时,则,即,当时,,,,舍去,综上,实数的取值范围是.【点睛】本题考查求函数解析式,函数不等式恒成立及函数零点问题.函数不等式恒成立通常采用参数分离法;函数零点问题要结合函数与方程的关系求解.20、证明见解析【解析】

分析:由线面垂直的性质可得,结合,利用线面垂直的判定定理可得平面.详解:∵面,在面内,∴,又∵,,∴面.点睛:证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.21、(1).(2)【解析】

(1)利用两直线平行的条件进行计算,需注意重合的情况。(2)求出到平行线与距离相等的直线方程为,将其与直线联立,得到直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论