![陕西省西安市电子科技大学附属中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页](http://file4.renrendoc.com/view2/M02/37/2C/wKhkFmZ2_JiAF035AAIhoMs7_w8414.jpg)
![陕西省西安市电子科技大学附属中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页](http://file4.renrendoc.com/view2/M02/37/2C/wKhkFmZ2_JiAF035AAIhoMs7_w84142.jpg)
![陕西省西安市电子科技大学附属中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页](http://file4.renrendoc.com/view2/M02/37/2C/wKhkFmZ2_JiAF035AAIhoMs7_w84143.jpg)
![陕西省西安市电子科技大学附属中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页](http://file4.renrendoc.com/view2/M02/37/2C/wKhkFmZ2_JiAF035AAIhoMs7_w84144.jpg)
![陕西省西安市电子科技大学附属中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页](http://file4.renrendoc.com/view2/M02/37/2C/wKhkFmZ2_JiAF035AAIhoMs7_w84145.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市电子科技大学附属中学2025届高一数学第二学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则,,的大小顺序为()A. B. C. D.2.已知向量=(2,tan),=(1,-1),∥,则=()A.2 B.-3 C.-1 D.-33.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040t5070根据上表提供的数据,求出y关于x的回归直线方程为y=6.5x+17.5,则tA.40 B.50 C.60 D.704.如图,在正方体ABCD﹣A1B1C1D1中,给出以下四个结论:①D1C∥平面A1ABB1②A1D1与平面BCD1相交③AD⊥平面D1DB④平面BCD1⊥平面A1ABB1正确的结论个数是()A.1 B.2 C.3 D.45.设,若3是与的等比中项,则的最小值为().A. B. C. D.6.函数的定义域为()A. B. C. D.7.函数的图象是()A. B. C. D.8.一支田径队有男运动员560人,女运动员420人,为了解运动员的健康情况,从男运动员中任意抽取16人,从女生中任意抽取12人进行调查.这种抽样方法是()A.简单随机抽样法 B.抽签法C.随机数表法 D.分层抽样法9.函数的最小值为()A. B. C. D.10.已知变量,满足约束条件则取最大值为()A. B. C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.下边程序执行后输出的结果是().12.在平面直角坐标系xOy中,若直线与直线平行,则实数a的值为______.13.已知,则的取值范围是_______;14.正方体中,分别是的中点,则所成的角的余弦值是__________.15.若直线始终平分圆的周长,则的最小值为________16.在△ABC中,若,则△ABC的形状是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,A,B,C所对的边分别为,满足.(I)求角A的大小;(Ⅱ)若,D为BC的中点,且的值.18.在等差数列中,已知,.(1)求数列的前项和的最大值;(2)若,求数列前项和.19.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.(1)求证:PB//平面EAC;(2)求证:AE⊥平面PCD;(3)当为何值时,PB⊥AC?20.在平面直角坐标系中,已知点,,坐标分别为,,,为线段上一点,直线与轴负半轴交于点,直线与交于点.(1)当点坐标为时,求直线的方程;(2)求与面积之和的最小值.21.高二数学期中测试中,为了了解学生的考试情况,从中抽取了个学生的成绩(满分为100分)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据).(1)求样本容量和频率分布直方图中的值;(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率..
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式求得.【详解】故选B.【点睛】本题考查三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式的三角恒等变换,属于基础题.2、B【解析】
通过向量平行得到的值,再利用和差公式计算【详解】向量=(2,tan),=(1,-1),∥故答案选B【点睛】本题考查了向量的平行,三角函数和差公式,意在考查学生的计算能力.3、C【解析】分析:由题意,求得这组熟记的样本中心(x详解:由题意,根据表中的数据可得x=2+4+5+6+85把(x,y)代入回归直线的方程,得点睛:本题主要考查了回归分析的初步应用,其中熟记回归直线的基本特征——回归直线方程经过样本中心点是解答的关键,着重考查了推理与运算能力.4、B【解析】
在①中,由,得到平面;在②中,由,得到平面;在③中,由,得到与平面相交但不垂直;在④中,由平面,得到平面平面,即可求解.【详解】由正方体中,可得:在①中,因为,平面,平面,∴平面,故①正确;在②中,∵,平面,平面,∴平面,故②错误;在③中,∵,∴与平面相交但不垂直,故③错误;在④中,∵平面,平面,∴平面平面,故④正确.故选:B.【点睛】本题主要考查了命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.5、C【解析】
由3是与的等比中项,可得,再利用不等式知识可得的最小值.【详解】解:3是与的等比中项,,,=,故选C.【点睛】本题考查了指数式和对数式的互化,及均值不等式求最值的运用,考查了计算变通能力.6、C【解析】要使函数有意义,需使,即,所以故选C7、D【解析】
求出分段函数的解析式,由此确定函数图象.【详解】由于,根据函数解析式可知,D选项符合.故选:D【点睛】本小题主要考查分段函数图象的判断,属于基础题.8、D【解析】
若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样【详解】总体由男生和女生组成,比例为560:420=4:1,所抽取的比例也是16:12=4:1.故选D.【点睛】本小题主要考查抽样方法,当总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样,属基本题.9、D【解析】
令,即有,则,运用基本不等式即可得到所求最小值,注意等号成立的条件.【详解】令,即有,则,当且仅当,即时,取得最小值.故选:【点睛】本题考查基本不等式,配凑法求解,属于基础题.10、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,当,即点,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,有最大值为.故选:C.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、15【解析】试题分析:程序执行中的数据变化如下:,输出考点:程序语句12、1【解析】
由,解得,经过验证即可得出.【详解】由,解得.经过验证可得:满足直线与直线平行,则实数.故答案为:1.【点睛】本题考查直线的平行与斜率之间的关系,考查推理能力与计算能力,属于基础题.13、【解析】
本题首先可以根据向量的运算得出,然后等式两边同时平方并化简,得出,最后根据即可得出的取值范围.【详解】设向量与向量的夹角为,因为,所以,即,因为,所以,即,所以的取值范围是.【点睛】本题考查向量的运算以及向量的数量积的相关性质,向量的数量积公式,考查计算能力,是简单题.14、【解析】
取的中点,由得出异面直线与所成的角为,然后在由余弦定理计算出,可得出结果.【详解】取的中点,由且可得为所成的角,设正方体棱长为,中利用勾股定理可得,又,由余弦定理可得,故答案为.【点睛】本题考查异面直线所成角的计算,一般利用平移直线找出异面直线所成的角,再选择合适的三角形,利用余弦定理或锐角三角函数来计算,考查空间想象能力与计算能力,属于中等题.15、9【解析】
平分圆的直线过圆心,由此求得的等量关系式,进而利用基本不等式求得最小值.【详解】由于直线始终平分圆的周长,故直线过圆的圆心,即,所以.【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值,属于基础题.16、钝角三角形【解析】
由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为钝角三角形.【点睛】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II).【解析】
(I)得,求出.(Ⅱ)由题意可知,化简得,再结合余弦定理求出,再利用正弦定理求出的值.【详解】(I),所以,所以因为,所以,所以(Ⅱ)由题意可知:所以所以又因为,所以,因为,所以由正弦定理可得,所以【点睛】本题主要考查三角恒等变换,考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理能力.18、(1)9;(2)【解析】
(1)利用等差数列公式得到,当时,最大为9(2)讨论和两种情况,分别计算得到答案.【详解】(1),又,所以令,得所以当时,最大为.(2)由(1)可知,当时,,所以当时,,所以.综上所述:【点睛】本题考查了等差数列的通项公式,前N项和最大值,绝对值求和,找到通项公式的正负分界处是解题的关键,意在考查学生的计算能力和综合应用能力.19、(1)见解析;(2)见解析【解析】
1)连结BD交AC于O,连结EO,由EO//PB可证PB//平面EA.(2)由侧面PAD⊥底面ABCD,,可证,又PAD是正三角形,所以AE⊥平面PCD.(3)设N为AD中点,连接PN,则,可证PN⊥底面ABCD,所以要使PB⊥AC,只需NB⊥AC,由相似三角形可求得比值.【详解】(1)连结BD交AC于O,连结EO,因为O,E分别为BD.PD的中点,所以EO//PB,,所以PB//平面EAC.(2)正三角形PAD中,E为PD的中点,所以,,又,所以,AE⊥平面PCD.(3)设N为AD中点,连接PN,则.又面PAD⊥底面ABCD,所以,PN⊥底面ABCD.所以,NB为PB在面ABCD上的射影.要使PB⊥AC,只需NB⊥AC,在矩形ABCD中,设AD=1,AB=x,由,得∽,解之得:,所以,当时,PB⊥AC.【点睛】本题综合考查线面平行的判定,线面垂直的判定,及探索性问题找异面直线垂直,第三问难度较大,需要把异面直线垂直转化为射影垂直,即共面垂直问题.20、(1);(2).【解析】
(1)求出的直线方程后可得的坐标,再求出的直线方程和的直线方程后可得的坐标,从而得到直线的直线方程.(2)直线的方程为,设,求出的直线方程后可得的坐标,从而可用表示,换元后利用基本不等式可求的最小值.【详解】(1)当时,直线的方程为,所以,直线的方程为①,又直线的方程为②,①②联立方程组得,所以直线的方程为.(2)直线的方程为,设,直线的方程为,所以.因为在轴负半轴上,所以,=,.令,则,(当且仅当),而当时,,故的最小值为.【点睛】直线方程有五种形式,常用的形式有点斜式、斜截式、截距式、一般式,垂直于的轴的直线没有点斜式、斜截式和截距式,垂直于轴的直线没有截距式,注意根据题设所给的条件选择合适的方程的形式.直线方程中的最值问题,注意可选择合适的变量(如斜率、倾斜角、动点的横坐标或纵坐标等)构建目标函数,再利用基本不等式或函数的单调性等求目标函数的最值.21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编版八年级历史(上)第4课洋务运动听课评课记录
- 环保合作项目协议书
- 2022年新课标八年级上册道德与法治《第六课 角色与责任同在 》听课评课记录(2课时)
- 苏科版数学七年级下册7.2《探索平行线的性质》听评课记录1
- 湘教版数学八年级上册1.3.3《整数指数幂的运算法则》听评课记录
- 无锡苏教版四年级数学上册《观察由几个正方体摆成的物体》听评课记录
- 湘教版数学九年级下册2.6《弧长与扇形面积》听评课记录2
- 可转股债权投资协议书范本
- 投资框架协议书范本
- 多人合办店铺合伙协议书范本
- 华为员工股权激励方案
- 卫生院安全生产知识培训课件
- 口腔医院感染预防与控制1
- 发生输液反应时的应急预案及处理方法课件
- 中国旅游地理(高职)全套教学课件
- 门脉高压性消化道出血的介入治疗课件
- 民航保密培训课件
- 儿童尿道黏膜脱垂介绍演示培训课件
- 诗词写作入门
- 学校教育中的STEM教育模式培训课件
- 电器整机新产品设计DFM检查表范例
评论
0/150
提交评论