陕西咸阳武功县普集高级中学2025届数学高一下期末预测试题含解析_第1页
陕西咸阳武功县普集高级中学2025届数学高一下期末预测试题含解析_第2页
陕西咸阳武功县普集高级中学2025届数学高一下期末预测试题含解析_第3页
陕西咸阳武功县普集高级中学2025届数学高一下期末预测试题含解析_第4页
陕西咸阳武功县普集高级中学2025届数学高一下期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西咸阳武功县普集高级中学2025届数学高一下期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,,则()A. B.C. D.2.如图,程序框图所进行的求和运算是()A. B.C. D.3.已知数列和数列都是无穷数列,若区间满足下列条件:①;②;则称数列和数列可构成“区间套”,则下列可以构成“区间套”的数列是()A., B.,C., D.,4.函数的简图是()A. B. C. D.5.已知直线的倾斜角为,且过点,则直线的方程为()A. B. C. D.6.已知一扇形的周长为,圆心角为,则该扇形的面积为()A. B. C. D.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还”.其意思为:“有一个人走378里路,第1天健步行走,从第2天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,可求出此人每天走多少里路.”那么此人第5天走的路程为()A.48里 B.24里 C.12里 D.6里8.在中,若,则是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形9.如图,两点为山脚下两处水平地面上的观测点,在两处观察点观察山顶点的仰角分别为,若,,且观察点之间的距离比山的高度多100米,则山的高度为()A.100米 B.110米 C.120米 D.130米10.阅读如图所示的算法框图,输出的结果S的值为A.8 B.6 C.5 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式,则____________.12.函数在的递减区间是__________13.设,,,,,为坐标原点,若、、三点共线,则的最小值是_______.14.如图,曲线上的点与轴的正半轴上的点及原点构成一系列正三角形,,,设正三角形的边长为(记为),.数列的通项公式=______.15.若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于________.16.已知关于实数x,y的不等式组构成的平面区域为,若,使得恒成立,则实数m的最小值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)请确定是否是数列中的项?18.已知、、是锐角中、、的对边,是的面积,若,,.(1)求;(2)求边长的长度.19.已知向量.(1)若向量,且,求的坐标;(2)若向量与互相垂直,求实数的值.20.如图所示,是正三角形,线段和都垂直于平面,设,,且为的中点.(1)求证:平面;(2)求平面与平面所成的较小二面角的大小21.已知等比数列是递增数列,且满足:,.(1)求数列的通项公式:(2)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

分别求出的值再带入即可.【详解】因为,所以因为,所以所以【点睛】本题考查两角差的余弦公式.属于基础题.2、A【解析】

根据当型循环结构,依次代入计算的值,即可得输出的表达式.【详解】根据循环结构程序框图可知,,,,…,,跳出循环体,所以结果为,故选:A.【点睛】本题考查了当型循环结构的应用,执行循环体计算输出值,属于基础题.3、C【解析】

直接利用已知条件,判断选项是否满足两个条件即可.【详解】由题意,对于A:,,∵,∴不成立,所以A不正确;对于B:由,,得不成立,所以B不正确;对于C:,∵,∴成立,并且也成立,所以C正确;对于D:由,,得,∴不成立,所以D不正确;故选:C.【点睛】本题考查新定义的理解和运用,考查数列的极限的求法,考查分析问题解决问题的能力及运算能力,属于中档题.4、D【解析】

变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.5、B【解析】

根据倾斜角的正切值为斜率,再根据点斜式写出直线方程,化为一般式即可.【详解】因为直线的倾斜角为,故直线斜率.又直线过点,故由点斜式方程可得整理为一般式可得:.故选:B.【点睛】本题考查直线方程的求解,涉及点斜式,属基础题.6、C【解析】

根据题意设出扇形的弧长与半径,通过扇形的周长与弧长公式即可求出扇形的弧长与半径,进而根据扇形的面积公式即可求解.【详解】设扇形的弧长为,半径为,扇形的圆心角的弧度数是.

则由题意可得:.

可得:,解得:,.可得:故选:C【点睛】本题主要考查扇形的周长与扇形的面积公式的应用,以及考查学生的计算能力,属于基础题.7、C【解析】记每天走的路程里数为{an},由题意知{an}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选C.8、A【解析】

首先根据降幂公式把等式右边降幂你,再根据把换成与的关系,进一步化简即可.【详解】,,,选A.【点睛】本题主要考查了二倍角,两角和与差的余弦等,需熟记两角和与差的正弦余弦等相关公式,以及特殊三角函数的值是解决本题的关键,属于基础题.9、A【解析】

设山的高度为,求出AB=2x,根据,求出山的高度.【详解】设山的高度为,如图,由,有.在中,,有,又由观察点之间的距离比山的高度多100,有.故山的高度为100.故选A【点睛】本题主要考查解三角形的实际应用,意在考查学生对该知识的理解掌握水平,属于基础题.10、B【解析】

判断框,即当执行到时终止循环,输出.【详解】初始值,代入循环体得:,,,输出,故选A.【点睛】本题由于循环体执行的次数较少,所以可以通过列举每次执行后的值,直到循环终止,从而得到的输出值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将代入即可求解【详解】令,可得.故答案为:【点睛】本题考查求数列的项,是基础题12、【解析】

利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.13、【解析】

根据三点共线求得的的关系式,利用基本不等式求得所求表达式的最小值.【详解】依题意,由于三点共线,所以,化简得,故,当且仅当,即时,取得最小值【点睛】本小题主要考查三点共线的向量表示,考查利用基本不等式求最小值,属于基础题.14、【解析】

先得出直线的方程为,与曲线的方程联立得出的坐标,可得出,并设,根据题中条件找出数列的递推关系式,结合递推关系式选择作差法求出数列的通项公式,即利用求出数列的通项公式。【详解】设数列的前项和为,则点的坐标为,易知直线的方程为,与曲线的方程联立,解得,;当时,点、,所以,点,直线的斜率为,则,即,等式两边平方并整理得,可得,以上两式相减得,即,易知,所以,即,所以,数列是等差数列,且首项为,公差也为,因此,.故答案为:。【点睛】本题考查数列通项的求解,根据已知条件找出数列的递推关系是解题的关键,在求通项公式时需结合递推公式的结构选择合适的方法求解数列的通项公式,考查分析问题的能力,属于难题。15、1【解析】

由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.【详解】由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=1.故答案为1.点评:本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题.【思路点睛】解本题首先要能根据韦达定理判断出a,b均为正值,当他们与-2成等差数列时,共有6种可能,当-2为等差中项时,因为,所以不可取,则-2只能作为首项或者末项,这两种数列的公差互为相反数;又a,b与-2可排序成等比数列,由等比中项公式可知-2必为等比中项,两数列搞清楚以后,便可列方程组求解p,q.16、【解析】

由,使得恒成立可知,只需求出的最大值即可,再由表示平面区域内的点与定点距离的平方,因此结合平面区域即可求出结果.【详解】作出约束条件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目标函数,则目标函数表示平面区域内的点与定点距离的平方,由图像易知,点到的距离最大.由得,所以.因此,即的最小值为37.故答案为37【点睛】本题主要考查简单的线性规划问题,只需分析清楚目标函数的几何意义,即可结合可行域来求解,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)是数列中的第项【解析】

(1)直接利用等差数列的公式计算得到通项公式.(2)将3998代入通项公式,是否有整数解.【详解】(1)设数列的公差为,由题意有,解得则数列的通项公式为,(2)假设是数列中的项,有,得,故是数列中的第项【点睛】本题考查了等差数列的公式,属于简单题.18、(1);(2).【解析】

(1)利用三角形的面积公式结合为锐角可求出的值;(2)利用余弦定理可求出边长的长度.【详解】(1)由三角形的面积公式可得,得.为锐角,因此,;(2)由余弦定理得,因此,.【点睛】本题考查利用三角形的面积公式求角,同时也考查了利用余弦定理求三角形的边长,考查计算能力,属于基础题.19、(1)或(2)【解析】

(1)因为,所以可以设求出坐标,根据模长,可以得到参数的方程.(2)由于已知条件可以计算出与坐标(含有参数)而两向量垂直,可以得到关于的方程,完成本题.【详解】(1)法一:设,则,所以解得所以或法二:设,因为,,所以,因为,所以解得或,所以或(2)因为向量与互相垂直所以,即而,,所以,因此,解得【点睛】考查了向量的线性表示,引入参数,只要我们能建立起引入参数的方程,则就能计算出所求参数值,从而完成本题.20、(1)见解析(2)【解析】

(1)取的中点,连接,先证即说明,再由线面平行的判定定理说明平面.(2)延长交的延长线于,连.说明为所求二面角的平面角.再计算即可.【详解】解:(1)如图所示,取的中点,连接.∵,∴.又,∴.∴四边形为平行四边形.故.∵平面,平面,∴平面.(2)延长交的延长线于,连.由,知,为的中点,又为的中点,∴.又平面,,∴平面.∴为所求二面角的平面角.在等腰直角三角形中,易求.故所求二面角的大小为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论