版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届天津市宁河区芦台第一中学高一数学第二学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是正方体的平面展开图,则在这个正方体中:①与平行②与是异面直线③与成角
④与是异面直线以上四个命题中,正确命题的个数是()A.1 B.2 C.3 D.42.式子的值为()A. B.0 C.1 D.3.已知等比数列的前项和为,若,,则数列的公比()A. B. C.或 D.以上都不对4.某学校从编号依次为01,02,…,72的72个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为12,21,则该样本中来自第四组的学生的编号为()A.30 B.31 C.32 D.335.函数的最大值为()A.1 B.2 C.3 D.56.若,则()A. B. C. D.7.一个三棱锥的三视图如图所示,则该棱锥的全面积为()A. B. C. D.8.在直三棱柱(侧棱垂直于底面)中,若,,,则其外接球的表面积为()A. B. C. D.9.若函数有零点,则实数的取值范围为()A. B. C. D.10.已知数列,对于任意的正整数,,设表示数列的前项和.下列关于的结论,正确的是()A. B.C. D.以上结论都不对二、填空题:本大题共6小题,每小题5分,共30分。11.用线性回归某型求得甲、乙、丙3组不同的数据的线性关系数分别为0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一个)组数据的线性关系性最强。12.在正方体的体对角线与棱所在直线的位置关系是______.13.已知圆的圆心在直线,与y轴相切,且被直线截得的弦长为,则圆C的标准方程为________.14.已知内接于抛物线,其中O为原点,若此内接三角形的垂心恰为抛物线的焦点,则的外接圆方程为_____.15.如图,半径为的扇形的圆心角为,点在上,且,若,则__________.16.平面四边形如图所示,其中为锐角三角形,,,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四面体中,分别是的中点,,.(1)求证:平面;(2)求三棱锥的体积.18.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.19.若关于的不等式对一切实数都成立,求实数的取值范围.20.已知数列的前项和,且,数列满足:对于任意,有.(1)求数列的通项公式;(2)求数列的通项公式,若在数列的两项之间都按照如下规则插入一些数后,构成新数列:和两项之间插入个数,使这个数构成等差数列,求;(3)若不等式成立的自然数恰有个,求正整数的值.21.已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,与异面且垂直,故①错误;与平行,故②错误;连接,则,为与所成角,连接,可知为正三角形,则,故③正确;由异面直线的定义可知,与是异面直线,故④正确.∴正确命题的个数是2个.故选:B.【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.2、D【解析】
利用两角和的正弦公式可得原式为cos(),再由特殊角的三角函数值可得结果.【详解】cos()=coscos,故选D.【点睛】本题考查两角和的余弦公式,熟练掌握两角和与差的余弦公式以及特殊角的三角函数值是解题的关键,属于基础题.3、C【解析】
根据和可得,解得结果即可.【详解】由得,所以,所以,所以,解得或故选:C.【点睛】本题考查了等比数列的通项公式的基本量的运算,属于基础题.4、A【解析】
根据相邻的两个组的编号确定组矩,即可得解.【详解】由题:样本中相邻的两个组的编号分别为12,21,所以组矩为9,则第一组所取学生的编号为3,第四组所取学生的编号为30.故选:A【点睛】此题考查系统抽样,关键在于根据系统抽样方法确定组矩,依次求得每组选取的编号.5、D【解析】
由可求得所处的范围,进而得到函数最大值.【详解】的最大值为故选:【点睛】本题考查函数最值的求解,关键是明确余弦型函数的值域,属于基础题.6、C【解析】
由及即可得解.【详解】由,可得.故选C.【点睛】本题主要考查了同角三角函数的基本关系及二倍角公式,属于基础题.7、A【解析】
数形结合,还原出该几何体的直观图,计算出各面的面积,可得结果.【详解】如图为等腰直角三角形,平面根据三视图,可知点到的距离为点到的距离为所以,故该棱锥的全面积为故选:A【点睛】本题考查三视图还原,并求表面积,难点在于还原几何体,对于一些常见的几何体要熟悉其三视图,对解题有很大帮助,属中档题.8、A【解析】
根据题意,将直三棱柱扩充为长方体,其体对角线为其外接球的直径,可得半径,即可求出外接球的表面积.【详解】∵,,∠ABC=90∘,∴将直三棱柱扩充为长、宽、高为2、2、3的长方体,其体对角线为其外接球的直径,长度为,∴其外接球的半径为,表面积为=17π.故选:A.【点睛】本题考查几何体外接球,通常将几何体进行割补成长方体,几何体外接球等同于长方体外接球,利用长方体外接球直径等于体对角线长求出半径,再求出球的体积和表面积即可,属于简单题.9、D【解析】
令,得,再令,得出,并构造函数,将问题转化为直线与函数在区间有交点,利用数形结合思想可得出实数的取值范围.【详解】令,得,,令,则,所以,,构造函数,其中,由于,,,所以,当时,直线与函数在区间有交点,因此,实数的取值范围是,故选D.【点睛】本题考查函数的零点问题,在求解含参函数零点的问题时,若函数中只含有单一参数,可以采用参变量分离法转化为参数直线与定函数图象的交点个数问题,难点在于利用换元法将函数解析式化简,考查数形结合思想,属于中等题.10、B【解析】
根据题意,结合等比数列的求和公式,先得到当时,,再由极限的运算法则,即可得出结果.【详解】因为数列,对于任意的正整数,,表示数列的前项和,所以,,,...…,所以当时,,因此.故选:B【点睛】本题主要考查数列的极限,熟记等比数列的求和公式,以及极限的运算法则即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、乙【解析】由当数据的相关系数的绝对值越趋向于,则相关性越强可知,因为甲、乙、丙组不同的数据的线性相关系数分别为,所以乙线性相关系数的绝对值越接近,所以乙组数据的相关性越强.12、异面直线【解析】
根据异面直线的定义,作出图形,即可求解,得到答案.【详解】如图所示,与不在同一平面内,也不相交,所以体对角线与棱是异面直线.【点睛】本题主要考查了异面直线的概念及其判定,其中熟记异面直线的定义是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.13、或【解析】
由圆心在直线x﹣3y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,距离d,由圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【详解】设圆心为(3t,t),半径为r=|3t|,则圆心到直线y=x的距离d|t|,而()2=r2﹣d2,9t2﹣2t2=7,t=±1,∴圆心是(3,1)或(-3,-1)故答案为或.【点睛】本题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.14、【解析】
由抛物线的对称性知A、B关于x轴对称,设出它们的坐标,利用三角形的垂心的性质,结合斜率之积等于﹣1即可求得直线MN的方程,即可求出点C的坐标,问题得以解决.【详解】∵抛物线关于x轴对称,内接三角形的垂心恰为抛物线的焦点,三边上的高过焦点,∴另两个顶点A,B关于x轴对称,即△ABO是等腰三角形,作AO的中垂线MN,交x轴与C点,而Ox是AB的中垂线,故C点即为△ABO的外接圆的圆心,OC是外接圆的半径,设A(x1,2),B(x1,﹣2),连接BF,则BF⊥AO,∵kBF,kAO,∴kBF•kAO=•1,整理,得x1(x1﹣5)=1,则x1=5,(x1=1不合题意,舍去),∵AO的中点为(,),且MN∥BF,∴直线MN的方程为y(x),当x1=5代入得2x+4y﹣91,∵C是MN与x轴的交点,∴C(,1),而△ABO的外接圆的半径OC,于是得到三角形外接圆方程为(x)2+y2=()2,△OAB的外接圆方程为:x2﹣9x+y2=1,故答案为x2﹣9x+y2=1.【点睛】本题考查抛物线的简单性质,考查了两直线垂直与斜率的关系,是中档题15、【解析】根据题意,可得OA⊥OC,以O为坐标为坐标原点,OC,OA所在直线分别为x轴、y轴建立平面直角坐标系,如图所示:则有C(1,0),A(0,1),B(cos30°,-sin30°),即.于是.由,得:,则:,解得.∴.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.16、.【解析】
由二倍角公式求出,然后用余弦定理求得,再由余弦定理求.【详解】由题意,在中,,在中,,即,解得,或.若,则,,不合题意,舍去,所以.故答案为:.【点睛】本题考查余弦的二倍角公式,考查余弦定理.掌握余弦定理是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)连接,由等腰三角形三线合一,可得,,再勾股定理可得,进而根据线面垂直的判定定理得到平面;(2)根据等积法可得,结合(1)中结论,可得即为棱锥的高,代入棱锥的体积公式,可得答案.【详解】证明:(1)连接.,,.,为中点,,,为中点,,,在中,,,,,,即.又,,平面平面.(2)等边的面积为,为中点而,.【点睛】本题考查的知识点是直线与平面垂直的判定,棱锥的体积公式,熟练掌握空间直线与直线垂直、直线与平面垂直之间的转化关系是解答的关键,属于中档题.18、(1)见解析;(2).【解析】
(1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论;(2)以菱形对角线交点为原点可建立空间直角坐标系,通过取中点,可证得平面,得到平面的法向量;再通过向量法求得平面的法向量,利用向量夹角公式求得两个法向量夹角的余弦值,进而可求得所求二面角的正弦值.【详解】(1)连接,,分别为,中点为的中位线且又为中点,且且四边形为平行四边形,又平面,平面平面(2)设,由直四棱柱性质可知:平面四边形为菱形则以为原点,可建立如下图所示的空间直角坐标系:则:,,,D(0,-1,0)取中点,连接,则四边形为菱形且为等边三角形又平面,平面平面,即平面为平面的一个法向量,且设平面的法向量,又,,令,则,二面角的正弦值为:【点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.19、【解析】
对二次项系数分成等于0和不等于0两种情况进行讨论,对时,利用二次函数的图象进行分析求解.【详解】当时,不等式对一切实数都成立,所以成立;当时,由题意得解得:;综上所述:.【点睛】本题考查不等式恒成立问题,注意运用分类讨论思想进行求解,同时也要结合二次函数的图象进行问题分析与求解.20、(1);,;(3).【解析】
(1)令求出,然后令,由得出,两式相减可得出数列是等比数列,确定该数列的首项和公比,即可求出数列的通项公式;(2)令可计算出,再令,由可得出,两式相减求出,求出,再检验是否满足的表达式,由此可得出数列的通项公式,求出,由,以及可得出的值;(3)化简可得,分类讨论,当、时,不等式成立,当时,,利用判断数列的单调性,得出该数列的最大项,可知满足不等式,且和不满足该不等式,由此可得出实数的取值范围,进而求出正整数的值.【详解】(1)对任意的,.当时,,解得;当时,由得出,两式相减得,化简得,即,所以,数列是以为首项,以为公比的等比数列,因此,;(2)对于任意,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水利工程项目类保险方案与费率
- 《数字地形测量学》本科题集
- 南充-PEP-24年小学四年级英语第五单元寒假试卷
- 小学语文大单元任务群教学设计思路及实施策略
- 强化学校管理-全面落实科学发展观
- 2024年项目投资与资产管理服务项目资金筹措计划书代可行性研究报告
- 【上海54】第一次月考B卷(考试版+解析)
- 赏识教育心得体会
- 讲文明演讲稿300字(33篇)
- 24.5 相似三角形的性质(第3课时)同步练习
- 小学作业检查记录表-小学教案检查记录表
- 三维激光扫描原理及应用课件
- (完整版)环境保护考核表
- 箱变安装施工方案66375
- (通风工)三级安全教育试卷及答案
- 供应室pdca质量提高腔镜器械包装合格率品管圈ppt模板课件
- 迪奥品牌分析通用PPT课件
- GB-T 18348-2022 商品条码 条码符号印制质量的检验(高清版)
- 塔设备的机械设计
- 工程建设廉政风险防控手册(试行)20151111
- 新国标充电CAN协议解析
评论
0/150
提交评论