版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市新四区示范校高三最后一卷新高考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A. B. C. D.2.复数的()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若不等式在区间内的解集中有且仅有三个整数,则实数的取值范围是()A. B.C. D.4.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A. B. C. D.5.把满足条件(1),,(2),,使得的函数称为“D函数”,下列函数是“D函数”的个数为()①②③④⑤A.1个 B.2个 C.3个 D.4个6.设全集为R,集合,,则A. B. C. D.7.已知平面向量满足与的夹角为,且,则实数的值为()A. B. C. D.8.若表示不超过的最大整数(如,,),已知,,,则()A.2 B.5 C.7 D.89.复数的共轭复数为()A. B. C. D.10.已知函数,则不等式的解集是()A. B. C. D.11.在直角中,,,,若,则()A. B. C. D.12.已知函数若恒成立,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数(为虚数单位),则的模为____.14.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点A,B,C,D.若AB=BC,则实数t的值为_________.15.直线是曲线的一条切线为自然对数的底数),则实数__________.16.执行如图所示的伪代码,若输出的y的值为13,则输入的x的值是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.18.(12分)已知数列的前项和为,且点在函数的图像上;(1)求数列的通项公式;(2)设数列满足:,,求的通项公式;(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;19.(12分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,.326.4741.90310209.7614.05(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.(2)使用参考数据,估计2020年的全国GDP总量.线性回归方程中斜率和截距的最小二乘法估计公式分别为:,.参考数据:45678的近似值551484031097298120.(12分)已知函数.(1)若,,求函数的单调区间;(2)时,若对一切恒成立,求a的取值范围.21.(12分)已知的内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.22.(10分)若数列满足:对于任意,均为数列中的项,则称数列为“数列”.(1)若数列的前项和,,试判断数列是否为“数列”?说明理由;(2)若公差为的等差数列为“数列”,求的取值范围;(3)若数列为“数列”,,且对于任意,均有,求数列的通项公式.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.2、C【解析】所对应的点为(-1,-2)位于第三象限.【考点定位】本题只考查了复平面的概念,属于简单题.3、C【解析】
由题可知,设函数,,根据导数求出的极值点,得出单调性,根据在区间内的解集中有且仅有三个整数,转化为在区间内的解集中有且仅有三个整数,结合图象,可求出实数的取值范围.【详解】设函数,,因为,所以,或,因为时,,或时,,,其图象如下:当时,至多一个整数根;当时,在内的解集中仅有三个整数,只需,,所以.故选:C.【点睛】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.4、D【解析】
试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.5、B【解析】
满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【详解】满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1);③不满足(2);④⑤均满足(1)(2).故选:B.【点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.6、B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.7、D【解析】
由已知可得,结合向量数量积的运算律,建立方程,求解即可.【详解】依题意得由,得即,解得.故选:.【点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.8、B【解析】
求出,,,,,,判断出是一个以周期为6的周期数列,求出即可.【详解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一个以周期为6的周期数列,则.故选:B.【点睛】本题考查周期数列的判断和取整函数的应用.9、D【解析】
直接相乘,得,由共轭复数的性质即可得结果【详解】∵∴其共轭复数为.故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.10、B【解析】
由导数确定函数的单调性,利用函数单调性解不等式即可.【详解】函数,可得,时,,单调递增,∵,故不等式的解集等价于不等式的解集..∴.故选:B.【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.11、C【解析】
在直角三角形ABC中,求得,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值.【详解】在直角中,,,,,
,
若,则故选C.【点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.12、D【解析】
由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.【详解】因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.故选:D【点睛】此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,所以.14、【解析】
由是偶函数可得时恒有,根据该恒等式即可求得,,的值,从而得到,令,可解得,,三点的横坐标,根据可列关于的方程,解出即可.【详解】解:因为是偶函数,所以时恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因为,所以,即,解得,故答案为:.【点睛】本题考查函数奇偶性的性质及二次函数的图象、性质,考查学生的计算能力,属中档题.15、【解析】
根据切线的斜率为,利用导数列方程,由此求得切点的坐标,进而求得切线方程,通过对比系数求得的值.【详解】,则,所以切点为,故切线为,即,故.故答案为:【点睛】本小题主要考查利用导数求解曲线的切线方程有关问题,属于基础题.16、8【解析】
根据伪代码逆向运算求得结果.【详解】输入,若,则,不合题意若,则,满足题意本题正确结果:【点睛】本题考查算法中的语言,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】
(1)分两种情况讨论:①两切线、中有一条切线斜率不存在时,求出两切线的方程,验证结论成立;②两切线、的斜率都存在,可设切线的方程为,将该直线的方程与椭圆的方程联立,由可得出关于的二次方程,利用韦达定理得出两切线的斜率之积为,进而可得出结论;(2)求出点、的坐标,利用两点间的距离公式结合韦达定理得出,换元,可得出,利用二次函数的基本性质可求得的取值范围.【详解】(1)由于点在半圆上,则.①当两切线、中有一条切线斜率不存在时,可求得两切线方程为,或,,此时;②当两切线、的斜率都存在时,设切线的方程为(、的斜率分别为、),,,,.综上所述,;(2)根据题意得、,,令,则,所以,当时,,当时,.因此,的取值范围是.【点睛】本题考查椭圆两切线垂直的证明,同时也考查了弦长的取值范围的计算,考查计算能力,属于中等题.18、(1)(2)当n为偶数时,;当n为奇数时,.(3)【解析】
(1)根据,讨论与两种情况,即可求得数列的通项公式;(2)由(1)利用递推公式及累加法,即可求得当n为奇数或偶数时的通项公式.也可利用数学归纳法,先猜想出通项公式,再用数学归纳法证明.(3)分类讨论,当n为奇数或偶数时,分别求得的最大值,即可求得的取值范围.【详解】(1)由题意可知,.当时,,当时,也满足上式.所以.(2)解法一:由(1)可知,即.当时,,①当时,,所以,②当时,,③当时,,所以,④……当时,n为偶数当时,n为偶数所以以上个式子相加,得.又,所以当n为偶数时,.同理,当n为奇数时,,所以,当n为奇数时,.解法二:猜测:当n为奇数时,.猜测:当n为偶数时,.以下用数学归纳法证明:,命题成立;假设当时,命题成立;当n为奇数时,,当时,n为偶数,由得故,时,命题也成立.综上可知,当n为奇数时同理,当n为偶数时,命题仍成立.(3)由(2)可知.①当n为偶数时,,所以随n的增大而减小从而当n为偶数时,的最大值是.②当n为奇数时,,所以随n的增大而增大,且.综上,的最大值是1.因此,若对于任意的,不等式恒成立,只需,故实数的取值范围是.【点睛】本题考查了累加法求数列通项公式的应用,分类讨论奇偶项的通项公式及求和方法,数学归纳法证明数列的应用,数列的单调性及参数的取值范围,属于难题.19、(1),;(2)148万亿元.【解析】
(1)由散点图知更适宜,对两边取自然对数得,令,,,则,再利用线性回归方程的计算公式计算即可;(2)将代入所求的回归方程中计算即可.【详解】(1)根据数据及图表可以判断,更适宜作为全国GDP总量关于的回归方程.对两边取自然对数得,令,,,得.因为,所以,所以关于的线性回归方程为,所以关于的回归方程为.(2)将代入,其中,于是2020年的全国GDP总量约为:万亿元.【点睛】本题考查非线性回归方程的应用,在处理非线性回归方程时,先作变换,转化成线性回归直线方程来处理,是一道中档题.20、(1)单调递减区间为,单调递增区间为;(2)【解析】
(1)求导,根据导数与函数单调性关系即可求出.(2)解法一:分类讨论:当时,观察式子可得恒成立;当时,利用导数判断函数为单调递增,可知;当时,令,由,,根据零点存在性定理可得,进而可得在上,单调递减,即不满足题意;解法二:通过分离参数可知条件等价于恒成立,进而记,问题转化为求在上的最小值问题,通过二次求导,结合洛比达法则计算可得结论.【详解】(1)当,,,,令,解得,当时,,当时,,在上单调递减,在上单调递增.(2)解法一:当时,函数,若时,此时对任意都有,所以恒成立;若时,对任意都有,,所以,所以在上为增函数,所以,即时满足题意;若时,令,则,所以在上单调递增,,,可知,一定存在使得,且当时,,所以在上,单调递减,从而有时,,不满足题意;综上可知,实数a的取值范围为.解法二:当时,函数,又当时,,对一切恒成立等价于恒成立,记,其中,则,令,则,在上单调递增,,恒成立,从而在上单调递增,,由洛比达法则可知,,,解得.实数a的取值范围为.【点睛】本题考查利用导数研究函数的单调性与不等式恒成立问题,考查了分类与整合的解题思想,涉及分离参数法等技巧、涉及到洛比达法则等知识,注意解题方法的积累,属于难题.21、(Ⅰ);(Ⅱ)有最大值,最大值为3.【解析】
(Ⅰ)利用正弦定理将角化边,再由余弦定理计算可得;(Ⅱ)由正弦定理可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024试用期接触劳动合同范本
- 供应合同-省级国家机关、事业单位和社会团体计算机(或打印机)协议供货合同
- 广东省七年级上学期语文期中考试试卷5套【附答案】
- 2024年车辆物流运输合同协议书
- 机械租赁合同模板集
- 展览活动中的房产赠与合同
- 货物仓储出租协议
- 2024年详细版租房协议书
- 手机销售合同常见问题解答
- 2024版酒店经营合作协议模板
- 客服话术大全-
- 干果加工项目建议书范文
- 人教版初中语文教材分析(课堂PPT)
- 护理核心制度督查表20179
- 红色古色绿色文化教育活动策划方案
- 《Monsters 怪兽》中英对照歌词
- 《正交分解法》导学案
- 建筑材料知识点汇总
- 平面构成作品欣赏
- 英语管道专业术语
- 社会工作毕业论文(优秀范文8篇)
评论
0/150
提交评论