河北省唐山市滦南县第二中学2025届高一数学第二学期期末预测试题含解析_第1页
河北省唐山市滦南县第二中学2025届高一数学第二学期期末预测试题含解析_第2页
河北省唐山市滦南县第二中学2025届高一数学第二学期期末预测试题含解析_第3页
河北省唐山市滦南县第二中学2025届高一数学第二学期期末预测试题含解析_第4页
河北省唐山市滦南县第二中学2025届高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市滦南县第二中学2025届高一数学第二学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设m,n是两条不同的直线,α A.若m⊥β,n⊥β , n⊥α,则m⊥αC.若m⊥n, n∥α,则m⊥α D.若m⊥n2.已知函数的图像如图所示,关于有以下5个结论:(1);(2),;(3)将图像上所有点向右平移个单位得到的图形所对应的函数是偶函数;(4)对于任意实数x都有;(5)对于任意实数x都有;其中所有正确结论的编号是()A.(1)(2)(3) B.(1)(2)(4)(5) C.(1)(2)(4) D.(1)(3)(4)(5)3.的三内角所对的边分别为,若,则角的大小是()A. B. C. D.4.圆周运动是一种常见的周期性变化现象,可表述为:质点在以某点为圆心半径为r的圆周上的运动叫“圆周运动”,如图所示,圆O上的点以点A为起点沿逆时针方向旋转到点P,若连接OA、OP,形成一个角,当角,则()A. B. C. D.15.若函数的图象可由函数的图象向右平移个单位长度变换得到,则的解析式是()A. B.C. D.6.已知的三个内角所对的边为,面积为,且,则等于()A. B. C. D.7.在三棱锥中,,,,平面平面,则三棱锥外接球的表面积为()A. B. C. D.8.已知向量,,则与夹角的大小为()A. B. C. D.9.两条平行直线与间的距离等于()A. B.2 C. D.410.在中,,,为的外接圆的圆心,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在,若,,,则__________________.12.已知向量,,,则_________.13.直线的倾斜角为__________.14.已知,,,则的最小值为__________.15.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.16.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于的一元二次函数,从集合中随机取一个数作为此函数的二次项系数,从集合中随机取一个数作为此函数的一次项系数.(1)若,,求函数有零点的概率;(2)若,求函数在区间上是增函数的概率.18.已知数列,,满足,,,.(1)设,求数列的通项公式;(2)设,求数列,的前n项和.19.设数列的前项和为,且.(1)求数列的通项公式;(2)若,为数列位的前项和,求;(3)在(2)的条件下,是否存在自然数,使得对一切恒成立?若存在,求出的值;若不存在,说明理由.20.已知正项等比数列中,,,等差数列中,,且.(1)求数列的通项公式;(2)求数列的前项和.21.已知小岛A的周围38海里内有暗礁,船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后在C处测得小岛A在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

依据立体几何有关定理及结论,逐个判断即可。【详解】A正确:利用“垂直于同一个平面的两条直线平行”及“两条直线有一条垂直于一个平面,则另一条也垂直于该平面”,若m⊥β且n⊥β ,则m//n,又n⊥α,所以m⊥αB错误:若m∥β, , β⊥α,则C错误:若m⊥n, n∥α,则m可能垂直于平面α,也可能平行于平面α,还可能在平面D错误:若m⊥n , n⊥β , β⊥α,则【点睛】本题主要考查立体几何中的定理和结论,意在考查学生几何定理掌握熟练程度。2、B【解析】

由图象可观察出的最值和周期,从而求出,将图像上所有的点向右平移个单位得到的函数,可判断(3)的正误,利用,可判断(4)(5)的正误.【详解】由图可知:,所以,,所以,即因为,所以,所以,故(1)(2)正确将图像上所有的点向右平移个单位得到的函数为此函数是奇函数,故(3)错误因为所以关于直线对称,即有故(4)正确因为所以关于点对称,即有故(5)正确综上可知:正确的有(1)(2)(4)(5)故选:B【点睛】本题考查的是三角函数的图象及其性质,属于中档题.3、C【解析】

将进行整理,反凑余弦定理,即可得到角.【详解】因为即故可得又故.故选:C.【点睛】本题考查余弦定理的变形,属基础题.4、A【解析】

运用求任意角的三角函数值的步骤:化正、脱周、变锐角和求值,可得所求值.【详解】.故选:A.【点睛】本题考查任意角三角函数值的求法,属于基础题.5、A【解析】

先化简函数,然后再根据图象平移得.【详解】由已知,∴.故选A.【点睛】本题考查两角和的正弦公式,考查三角函数的图象平移变换,属于基础题.6、C【解析】

利用三角形面积公式可得,结合正弦定理及三角恒等变换知识可得,从而得到角A.【详解】∵∴即∴∴∴,∴(舍)∴故选C【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.7、D【解析】

结合题意,结合直线与平面垂直的判定和性质,得到两个直角三角形,取斜边的一半,即为外接球的半径,结合球表面积计算公式,计算,即可.【详解】过P点作,结合平面ABC平面PAC可知,,故,结合可知,,所以,结合所以,所以,故该外接球的半径等于,所以球的表面积为,故选D.【点睛】考查了平面与平面垂直的性质,考查了直线与平面垂直的判定和性质,难度偏难.8、D【解析】

根据向量,的坐标及向量夹角公式,即可求出,从而根据向量夹角的范围即可求出夹角.【详解】向量,,则;∴;∵0≤<a,b>≤π;∴<a,b>=.故选:D.【点睛】本题考查数量积表示两个向量的夹角,已知向量坐标代入夹角公式即可求解,属于常考题型,属于简单题.9、C【解析】

先把直线方程中未知数的系数化为相同的,再利用两条平行直线间的距离公式,求得结果.【详解】解:两条平行直线与间,即两条平行直线与,故它们之间的距离为,故选:.【点睛】本题主要考查两条平行直线间的距离公式应用,注意未知数的系数必需相同,属于基础题.10、A【解析】

利用正弦定理可求出的外接圆半径.【详解】由正弦定理可得,因此,,故选A.【点睛】本题考查利用正弦定理求三角形外接圆的半径,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由,故用二倍角公式算出,再用余弦定理算得即可.【详解】,又,,又,代入得,所以.故答案为【点睛】本题主要考查二倍角公式与余弦定理,属于基础题型.12、【解析】

根据向量平行交叉相乘相减等于0即可.【详解】因为两个向量平行,所以【点睛】本题主要考查了向量的平行,即,若则,属于基础题.13、【解析】试题分析:由直线方程可知斜率考点:直线倾斜角与斜率14、8【解析】由题意可得:则的最小值为.当且仅当时等号成立.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.15、【解析】

先结合求出,再由求解即可【详解】由,则故答案为:【点睛】本题考查扇形的弧长和面积公式的使用,属于基础题16、【解析】

试题分析:设三角形的三边长为a-4,b=a,c=a+4,(a<b<c),根据题意可知三边长构成公差为4的等差数列,可知a+c=2b,C=120,,则由余弦定理,c=a+b-2abcosC,,三边长为6,10,14,,b=a+c-2accosB,即(a+c)=a+c-2accosB,cosB=,sinB=可知S==.考点:本试题主要考查了等差数列与解三角形的面积的求解的综合运用.点评:解决该试题的关键是利用余弦定理来求解,以及边角关系的运用,正弦面积公式来求解.巧设变量a-4,a,a+4会简化运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)依次列出所有可能的情况,求出满足的情况总数,即可得到概率;(2)列出不等关系,表示出平面区域,求出满足表示的区域的面积,即可得到概率.【详解】(1)由题可得,,从集合中随机取一个数作为此函数的二次项系数,从集合中随机取一个数作为此函数的一次项系数,记为,这样的有序数对共有,9种情况;函数有零点,即满足,满足条件的有:,6种情况,所以其概率为;(2),满足条件的有序数对,,即平面直角坐标系内区域:矩形及内部区域,面积为4,函数在区间上是增函数,即满足,,,即,平面直角坐标系内区域:直角梯形及内部区域,面积为3,所以其概率为.【点睛】此题考查古典概型与几何概型,关键在于准确得出二次函数有零点和在区间上是增函数,分别所对应的基本事件个数以及对应区域的面积.18、(1)(2)【解析】

(1)由数列的递推公式得到和的关系式,进而推导出满足的关系式,进而求得数列的通项公式;(2)的通项公式是由等差数列的项乘以等比数列的项,利用乘公比错位相减法,即可求解数列的前n项和.【详解】(1)由题意,知,则,即,又由,所以,所以,所以,,,,.(2)由(1)知:,,,两式相减得:.【点睛】本题主要考查数列的递推公式的应用、以及“错位相减法”求和,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的逻辑思维能力及基本计算能力等.19、(1)(2)(3)【解析】

(1)根据题干可推导得到,进而得到数列是以为首项,为公比的等比数列,由等比数列的通项公式得到结果;(2)由错位相减的方法得到结果;(3)根据第二问得到:,数列单调递增,由数列的单调性得到数列范围.【详解】(1)由,令,则,又,所以.当时,由可得,,即,所以是以为首项,为公比的等比数列,于是.(2)∴∴从而.(3)由(2)知,∴数列单调递增,∴,又,∴要恒成立,则,解得,又,故.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。20、(1);(2).【解析】

(1)设正项等比数列的公比为q(q>0),由已知列式求得公比,则等比数列的通项公式可求;(2)由,求解等差数列的公差,则数列的前n项和可求.【详解】(1)设正项等比数列的公比为q(q>0),由,得,则q=3.;(2)设等差数列的公差为d,由,得,∴d=3.∴数列的前n项和【点睛】本题主要考查等差数列的通项公式与求和公式,考查了等比数列的通项公式,意在考查综

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论