2025届新疆哈密地区第二中学数学高一下期末预测试题含解析_第1页
2025届新疆哈密地区第二中学数学高一下期末预测试题含解析_第2页
2025届新疆哈密地区第二中学数学高一下期末预测试题含解析_第3页
2025届新疆哈密地区第二中学数学高一下期末预测试题含解析_第4页
2025届新疆哈密地区第二中学数学高一下期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆哈密地区第二中学数学高一下期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,只需把函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.3.函数的最小正周期是()A. B. C. D.4.在等差数列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+25.如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则此几何体的表面积为()A. B. C. D.6.已知,都是实数,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.若角α的终边过点P(-3,-4),则cos(π-2α)的值为()A. B. C. D.8.半径为,中心角为的弧长为()A. B. C. D.9.已知圆,过点作圆的最长弦和最短弦,则直线,的斜率之和为A. B. C.1 D.10.已知等差数列的前项和为,且,则满足的正整数的最大值为()A.16 B.17 C.18 D.19二、填空题:本大题共6小题,每小题5分,共30分。11.在锐角中,则的值等于.12.在中,,,,则的面积等于______.13.直线的倾斜角为_____________14.关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图象关于点成中心对称图象;④将函数的图象向左平移个单位后将与的图象重合.其中正确的命题序号__________15.若则的最小值是__________.16.已知平行四边形的周长为,,则平行四边形的面积是_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,,设函数.(1)求的最小正周期;(2)求在上的最大值和最小值.18.函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形.(1)求的值及函数的值域;(2)若,且,求的值.19.某销售公司通过市场调查,得到某种商品的广告费(万元)与销售收入(万元)之间的数据如下:广告费(万元)1245销售收入(万元)10224048(1)求销售收入关于广告费的线性回归方程;(2)若该商品的成本(除广告费之外的其他费用)为万元,利用(1)中的回归方程求该商品利润的最大值(利润=销售收入-成本-广告费).参考公式:,.20.如图,三角形中,,是边长为l的正方形,平面底面,若分别是的中点.(1)求证:底面;(2)求几何体的体积.21.已知直线经过点,且与轴正半轴交于点,与轴正半轴交于点,为坐标原点.(1)若点到直线的距离为4,求直线的方程;(2)求面积的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据,因此只需把函数的图象向左平移个单位长度.【详解】因为,所以只需把函数的图象向左平移个单位长度即可得,选A.【点睛】本题主要考查就三角函数的变换,左加右减只针对,属于基础题.2、C【解析】

根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.3、C【解析】

根据三角函数的周期公式,进行计算,即可求解.【详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【点睛】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.4、C【解析】

直接利用等差数列公式解方程组得到答案.【详解】aaa1故答案选C【点睛】本题考查了等差数列的通项公式,属于基础题型.5、B【解析】

作出多面体的直观图,将各面的面积相加可得出该多面积的表面积.【详解】由三视图得知该几何体的直观图如下图所示:由直观图可知,底面是边长为的正方形,其面积为;侧面是等腰三角形,且底边长,底边上的高为,其面积为,且;侧面是直角三角形,且为直角,,,其面积为,,的面积为;侧面积为等腰三角形,底边长,,底边上的高为,其面积为.因此,该几何体的表面积为,故选:B.【点睛】本题考查几何体的三视图以及几何体表面积的计算,再利用三视图求几何体的表面积时,要将几何体的直观图还原,并判断出各个面的形状,结合图中数据进行计算,考查空间想象能力与计算能力,属于中等题.6、D【解析】;,与没有包含关系,故为“既不充分也不必要条件”.7、C【解析】

由三角函数的定义得,再利用诱导公式以及二倍角余弦公式求解.【详解】由三角函数的定义,可得,则,故选C.【点睛】本题主要考查了三角函数的定义,以及二倍角的余弦公式的应用,着重考查了推理与运算能力,属于基础题.8、D【解析】

根据弧长公式,即可求得结果.【详解】,.故选D.【点睛】本题考查了弧长公式,属于基础题型.9、D【解析】

根据圆的几何性质可得最长弦是直径,最短弦和直径垂直,故可计算斜率,并求和.【详解】由题意得,直线经过点和圆的圆心弦长最长,则直线的斜率为,由题意可得直线与直线互相垂直时弦长最短,则直线的斜率为,故直线,的斜率之和为.【点睛】本题考查了两直线垂直的斜率关系,以及圆内部的几何性质,属于简单题型.10、C【解析】

先由,得到,,,公差大于零,再由数列的求和公式,即可得出结果.【详解】由得,,,,所以公差大于零.又,,,故选C.【点睛】本题主要考查等差数列的应用,熟记等差数列的性质与求和公式即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】设由正弦定理得12、【解析】

先用余弦定理求得,从而得到,再利用正弦定理三角形面积公式求解.【详解】因为在中,,,由余弦定理得,所以由正弦定理得故答案为:【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.13、【解析】

先求得直线的斜率,由此求得对应的倾斜角.【详解】依题意可知,直线的斜率为,故倾斜角为.故答案为:【点睛】本小题主要考查直线斜率和倾斜角的计算,属于基础题.14、①③【解析】

根据题意,由于,根据函数周期为,可知①、若存在,有时,成立;正确,对于②、在区间上是单调递减;因此错误,对于③、,函数的图象关于点成中心对称图象,成立.对于④、将函数的图象向左平移个单位后得到,与的图象重合错误,故答案为①③考点:命题的真假点评:主要是考查了三角函数的性质的运用,属于基础题.15、【解析】

根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.16、【解析】

设,根据条件可以求出,两边平方可以得到关系式,由余弦定理可以表示出,把代入得到的关系式,联立求出的值,过作垂直于,设,则可以表示,利用勾股定理,求出的值,确定长,即求出平行四边形的面积【详解】设又,由余弦定理将代入,得到将(2)代入(1)得到可以解得:(另一种情况不影响结果),过作垂直于,设,则,所以填写【点睛】几何题如果关系量理清不了,可以尝试作图,引入相邻边的参数,通过方程把参数求出,平行四边形问题可以通过转化变为三角形问题,进而把问题简单化.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)时,取最小值;时,取最大值1.【解析】

试题分析:(1)根据向量数量积、二倍角公式及配角公式得,再根据正弦函数性质得.(2)先根据得,,再根据正弦函数性质得最大值和最小值.试题解析:(1),最小正周期为.(2)当时,,由图象可知时单调递增,时单调递减,所以当,即时,取最小值;当,即时,取最大值1.18、(2),函数的值域为;(2).【解析】

(1)将函数化简整理,根据正三角形的高为,可求出,进而可得其值域;(2)由得到,再由求出,进而可求出结果.【详解】(1)由已知可得,又正三角形的高为,则,所以函数的最小正周期,即,得,函数的值域为.(2)因为,由(1)得,即,由,得,即=,故.【点睛】本题主要考查三角函数的图象和性质,熟记正弦函数的性质即可求解,属于基础题型.19、(1);(2)19.44(万无)【解析】

(1)先求出,然后求出回归系数,得回归方程;(2)由回归方程得估计销售收入,减去成本得利润,由二次函数知识得最大值.【详解】(1)由题意,,所以,,所以回归方程为;(2)由(1),所以(万元)时,利润最大且最大值为19.44(万元).【点睛】本题考查求线性回归直线方程,考查回归方程的应用.考查了学生的运算求解能力.20、(1)证明见解析;(2).【解析】试题分析:(1)通过面面平行证明线面平行,所以取的中点,的中点,连接.只需通过证明HG//BC,HF//AB来证明面GHF//面ABC,从而证明底面.(2)原图形可以看作是以点C为顶点,ABDE为底的四棱锥,所四棱锥的体积公式可求得体积.试题解析:(1)取的中点,的中点,连接.(如图)∵分别是和的中点,∴,且,,且.又∵为正方形,∴,.∴且.∴为平行四边形.∴,又平面,∴平面.(2)因为,∴,又平面平面,平面,∴平面.∵三角形是等腰直角三角形,∴.∵是四棱锥,∴.【点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论