安徽省示范高中2025届数学高一下期末复习检测模拟试题含解析_第1页
安徽省示范高中2025届数学高一下期末复习检测模拟试题含解析_第2页
安徽省示范高中2025届数学高一下期末复习检测模拟试题含解析_第3页
安徽省示范高中2025届数学高一下期末复习检测模拟试题含解析_第4页
安徽省示范高中2025届数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省示范高中2025届数学高一下期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.(2018年天津卷文)设变量x,y满足约束条件则目标函数的最大值为A.6 B.19 C.21 D.452.在中,,,则的最大值为A. B. C. D.3.在△ABC中,a,b,c分别为内角A,B,C所对的边,b=c,且满足=,若点O是△ABC外一点,∠AOB=θ(0<θ<π),OA=2OB=2,则平面四边形OACB面积的最大值是()A. B. C.3 D.4.函数的图象可能是().A. B. C. D.5.已知与之间的几组数据如下表则与的线性回归方程必过()A.点 B.点C.点 D.点6.若,则()A.0 B.-1 C.1或0 D.0或-17.已知是第二象限角,()A. B. C. D.8.某学生用随机模拟的方法推算圆周率的近似值,在边长为的正方形内有一内切圆,向正方形内随机投入粒芝麻,(假定这些芝麻全部落入该正方形中)发现有粒芝麻落入圆内,则该学生得到圆周率的近似值为()A. B. C. D.9.已知扇形的周长为8,圆心角为2弧度,则该扇形的面积为()A. B. C. D.10.如图所示的程序框图,若执行的运算是,则在空白的执行框中,应该填入A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,,是其前项和,当时,恒有、、成等比数列,则________.12.数列满足:,,则______.13.函数的定义域为_______.14.已知cosθ,θ∈(π,2π),则sinθ=_____,tan_____.15.若数列的首项,且(),则数列的通项公式是__________.16.函数的最小正周期是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.自变量在什么范围取值时,函数的值等于0?大于0呢?小于0呢?18.在中,角,,所对的边为,,,向量与向量共线.(1)若,求的值;(2)若为边上的一点,且,若为的角平分线,求的取值范围.19.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.20.已知向量,,.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的x的集合.21.已知,,,求:的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.2、A【解析】

利用正弦定理得出的外接圆直径,并利用正弦定理化边为角,利用三角形内角和关系以及两角差正弦公式、配角公式化简,最后利用正弦函数性质可得出答案.【详解】中,,,则,,其中由于,所以,所以最大值为.故选A.【点睛】本题考查正弦定理以及两角差正弦公式、配角公式,考查基本分析计算能力,属于中等题.3、A【解析】

根据正弦和角公式化简得是正三角形,再将平面四边形OACB面积表示成的三角函数,利用三角函数求得最值.【详解】由已知得:即所以即又因为所以所以又因为所以是等边三角形.所以在中,由余弦定理得且因为平面四边形OACB面积为当时,有最大值,此时平面四边形OACB面积有最大值,故选A.【点睛】本题关键在于把所求面积表示成角的三角函数,属于难度题.4、D【解析】

首先判断函数的奇偶性,排除选项,再根据特殊区间时,判断选项.【详解】是偶函数,是奇函数,是奇函数,函数图象关于原点对称,故排除A,B,当时,,,排除C.故选D.【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项.5、C【解析】

根据线性回归方程必过样本中心点,即可得到结论.【详解】,,8根据线性回归方程必过样本中心点,可得与的线性回归方程必过.故选:C.【点睛】本题考查线性回归方程,解题的关键是利用线性回归方程必过样本中心点,属于基础题.6、D【解析】

由二倍角公式可得,即,从而分情况求解.【详解】易得,或.

由得.

由,得.故选:D【点睛】本题考查二倍角公式的应用以及有关的二次齐次式子求值,属于中档题.7、A【解析】cosα=±=±,又∵α是第二象限角,∴cosα=-.8、B【解析】

由落入圆内的芝麻数占落入正方形区域内的芝麻数的比例等于圆的面积与正方形的面积比相等,列等式求出的近似值.【详解】边长为的正方形内有一内切圆的半径为,圆的面积为,正方形的面积为,由几何概型的概率公式可得,得,因此,该学生得到圆周率的近似值为,故选:B.【点睛】本题考查利用随机模拟思想求圆周率的近似值,解题的关键就是利用概率相等结合几何概型的概率公式列等式求解,考查计算能力,属于基础题.9、A【解析】

利用弧长公式、扇形的面积计算公式即可得出.【详解】设此扇形半径为r,扇形弧长为l=2r则2r+2r=8,r=2,∴扇形的面积为r=故选A【点睛】本题考查了弧长公式、扇形的面积计算公式,属于基础题.10、D【解析】试题分析:解:运行第一次:,不成立;运行第二次:,不成立;运行第三次:,不成立;运行第四次:,不成立;运行第四次:,成立;输出所以应选D.考点:循环结构.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

由题意得出,当时,由,代入,化简得出,利用倒数法求出的通项公式,从而得出的表达式,于是可求出的值.【详解】当时,由题意可得,即,化简得,得,两边取倒数得,,所以,数列是以为首项,以为公差的等差数列,,,则,因此,,故答案为:.【点睛】本题考查数列极限的计算,同时也考查了数列通项的求解,在含的数列递推式中,若作差法不能求通项时,可利用转化为的递推公式求通项,考查分析问题和解决问题的能力,综合性较强,属于中等题.12、【解析】

可通过赋值法依次进行推导,找出数列的周期,进而求解【详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【点睛】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题13、【解析】

由二次根式有意义,得:,然后利用指数函数的单调性即可得到结果.【详解】由二次根式有意义,得:,即,因为在R上是增函数,所以,x≤2,即定义域为:【点睛】本题主要考查函数定义域的求法以及指数不等式的解法,要求熟练掌握常见函数成立的条件,比较基础.14、﹣2.【解析】

由题意利用同角三角函数的基本关系,二倍角公式,求得式子的值.【详解】由,,知,则,.故答案为:,.【点睛】本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.15、【解析】,得(),两式相减得,即(),,得,经检验n=1不符合。所以,16、【解析】

根据周期公式即可求解.【详解】函数的最小正周期故答案为:【点睛】本题主要考查了正弦型函数的周期,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【解析】

将问题转化为解方程和解不等式,以及,分别求解即可.【详解】由题:由得:或;由得:;由得:或,综上所述:当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【点睛】此题考查解二次方程和二次不等式,关键在于熟练掌握二次方程和二次不等式的解法,准确求解.18、(1)32;(2)【解析】

由两向量坐标以及向量共线,结合正弦定理,化简可得(1)由,,代入原式化简,即可得到答案;(2)在和在中,利用正弦定理,化简可得,,代入原式,化简即可得到,利用三角形的内角范围结合三角函数的值域,即可求出的取值范围.【详解】向量与向量共线所以,由正弦定理得:.即,由于在中,,则,所以,由于,则.(1),.(2)因为,为的角平分线,所以,在中,,因为,所以,所以在中,,因为,所以,所以,则,因为,所以,所以,即的取值范围为.【点睛】本题主要考查向量共线、正弦定理、二倍角公式、三角函数的值域等知识,考查学生转化与求解能力,考查学生基本的计算能力,有一定综合性.19、(1)证明见解析;(2).【解析】

(1)当时,由代入,化简得出,由此可证明出数列是等差数列;(2)求出数列的通项公式,可得出,由可得出在时的表达式,再对是否满足进行检验,可得出数列的通项公式.【详解】(1)当时,,,即,,等式两边同时除以得,即,因此,数列是等差数列;(2)由(1)知,数列是以为首项,以为公差的等差数列,,则.,得.不适合.综上所述,.【点睛】本题考查等差数列的证明,同时也考查了数列通项公式的求解,解题的关键就是利用关系式进行计算,考查推理能力与计算能力,属于中等题.20、(1)值域为.(2)【解析】

(1)由向量,,利用数量积运算得到;由,得到,利用整体思想转化为正弦函数求值域.(2)不等式,转化为,利用整体思想,转化为三角不等式,利用单位圆或正弦函数的图象求解.【详解】(1)因为,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论