辽宁省凌源市第三高级中学2025届高一下数学期末检测模拟试题含解析_第1页
辽宁省凌源市第三高级中学2025届高一下数学期末检测模拟试题含解析_第2页
辽宁省凌源市第三高级中学2025届高一下数学期末检测模拟试题含解析_第3页
辽宁省凌源市第三高级中学2025届高一下数学期末检测模拟试题含解析_第4页
辽宁省凌源市第三高级中学2025届高一下数学期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省凌源市第三高级中学2025届高一下数学期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著,在这部著作中,许多数学问题都是以歌诀形式呈现的.“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问小儿多少岁,各儿岁数要谁推,这位公公年龄最小的儿子年龄为()A.8岁 B.11岁 C.20岁 D.35岁2.椭圆以轴和轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A. B.C.或 D.或3.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何?”根据此问题写出如下程序框图,若输出,则输入m的值为()A.240 B.220 C.280 D.2604.实数满足,则的取值范围为()A. B. C. D.5.已知,且,则()A. B. C. D.6.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或 C.或 D.或7.在中,角所对的边分别为,若,,,则等于()A.4 B. C. D.8.已知,则的垂直平分线所在直线方程为()A. B.C. D.9.函数y=tan(–2x)的定义域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}10.函数的图象的一条对称轴方程是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在边长为2的菱形中,,是对角线与的交点,若点是线段上的动点,且点关于点的对称点为,则的最小值为______.12.在中,若,则____________.13.在△中,,,,则_________.14.若点,关于直线l对称,那么直线l的方程为________.15.若是方程的解,其中,则________.16.已知,若对任意,均有,则的最小值为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,a=3,b−c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.18.在平面直角坐标系中,已知点,,坐标分别为,,,为线段上一点,直线与轴负半轴交于点,直线与交于点.(1)当点坐标为时,求直线的方程;(2)求与面积之和的最小值.19.已知.(1)求与的夹角;(2)求.20.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.21.已知公差不为零的等差数列满足:,且成等比数列.(1)求数列的通项公式.(2)记为数列的前项和,是否存在正整数,使得?若存在,请求出的最小值;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

九个儿子的年龄成等差数列,公差为1.【详解】由题意九个儿子的年龄成等差数列,公差为1.记最小的儿子年龄为a1,则S9=9故选B.【点睛】本题考查等差数列的应用,解题关键正确理解题意,能用数列表示题意并求解.2、C【解析】

由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),分类讨论,即可求解.【详解】由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),则若焦点在x轴上,则,,椭圆方程为;若焦点在y轴上,则,,椭圆方程为,故选C.【点睛】本题主要考查了椭圆的方程的求解,其中解答中熟记椭圆的标准方程的形式,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解析】

根据程序框图,依次循环计算,可得输出的表达式.结合,由等比数列求和公式,即可求得的值.【详解】由程序框图可知,此时输出.所以即由等比数列前n项和公式可得解得故选:A【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.4、A【解析】

画出可行域,平移基准直线到可行域边界的位置,由此求得目标函数的取值范围.【详解】画出可行域如下图所示,平移基准直线到可行域边界的位置,由图可知目标函数分别在出取的最小值和最大值,最小值为,最大值为,故的取值范围是,故选A.【点睛】本小题主要考查线性规划求最大值和最小值,考查数形结合的数学思想方法,属于基础题.5、D【解析】

根据不等式的性质,一一分析选择正误即可.【详解】根据不等式的性质,当时,对于A,若,则,故A错误;对于B,若,则,故B错误;对于C,若,则,故C错误;对于D,当时,总有成立,故D正确;故选:D.【点睛】本题考查不等式的基本性质,属于基础题.6、C【解析】

由题意可知:点在反射光线上.设反射光线所在的直线方程为:,利用直线与圆的相切的性质即可得出.【详解】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,即.由相切的性质可得:,化为:,解得或.故选.【点睛】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.7、B【解析】

根据正弦定理,代入数据即可。【详解】由正弦定理,得:,即,即:解得:选B。【点睛】此题考查正弦定理:,代入数据即可,属于基础题目。8、A【解析】

首先根据题中所给的两个点的坐标,应用中点坐标公式求得线段的中点坐标,利用两点斜率坐标公式求得,利用两直线垂直时斜率的关系,求得其垂直平分线的斜率,利用点斜式写出直线的方程,化简求得结果.【详解】因为,所以其中点坐标是,又,所以的垂直平分线所在直线方程为,即,故选A.【点睛】该题考查的是有关线段的垂直平分线的方程的问题,在解题的过程中,需要明确线段的垂直平分线的关键点一是垂直,二是平分,利用相关公式求得结果.9、A【解析】

根据诱导公式化简解析式,由正切函数的定义域求出此函数的定义域.【详解】由题意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函数的定义域是{x|x≠+,k∈Z},故选:A.【点睛】本题考查正切函数的定义域,以及诱导公式的应用,属于基础题.10、A【解析】

由,得,,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、-6【解析】

由题意,然后结合向量共线及数量积运算可得,再将已知条件代入求解即可.【详解】解:菱形的对称性知,在线段上,且,设,则,所以,又因为,当时,取得最小值-6.故答案为:-6.【点睛】本题考查了平面向量的线性运算,重点考查了向量共线及数量积运算,属中档题.12、2【解析】

根据正弦定理角化边可得答案.【详解】由正弦定理可得.故答案为:2【点睛】本题考查了正弦定理角化边,属于基础题.13、【解析】

利用余弦定理求得的值,进而求得的大小.【详解】由余弦定理得,由于,故.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.14、【解析】

利用直线垂直求出对称轴斜率,利用中点坐标公式求出中点,再由点斜式可得结果.【详解】求得,∵点,关于直线l对称,∴直线l的斜率1,直线l过AB的中点,∴直线l的方程为,即.故答案为:.【点睛】本题主要考查直线垂直的性质,考查了直线点斜式方程的应用,属于基础题.15、或【解析】

将代入方程,化简结合余弦函数的性质即可求解.【详解】由题意可得:,即所以或又所以或故答案为:或【点睛】本题主要考查了三角函数求值问题,属于基础题.16、【解析】

根据对任意,均有,分析得到,再根据正弦型函数的最值公式求解出的最小值.【详解】因为对任意,均有,所以,所以,所以,所以.故答案为:.【点睛】本题考查正弦型函数的应用,难度一般.正弦型函数的最值一定是在对称轴的位置取到,因此正弦型函数取最大值与最小值时对应的自变量的差的绝对值最小为,此时最大值与最小值对应的对称轴相邻.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由题意列出关于a,b,c的方程组,求解方程组即可确定b,c的值;(Ⅱ)由题意结合正弦定理和两角和差正余弦公式可得的值.【详解】(Ⅰ)由题意可得:,解得:.(Ⅱ)由同角三角函数基本关系可得:,结合正弦定理可得:,很明显角C为锐角,故,故.【点睛】本题主要考查余弦定理、正弦定理的应用,两角和差正余弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.18、(1);(2).【解析】

(1)求出的直线方程后可得的坐标,再求出的直线方程和的直线方程后可得的坐标,从而得到直线的直线方程.(2)直线的方程为,设,求出的直线方程后可得的坐标,从而可用表示,换元后利用基本不等式可求的最小值.【详解】(1)当时,直线的方程为,所以,直线的方程为①,又直线的方程为②,①②联立方程组得,所以直线的方程为.(2)直线的方程为,设,直线的方程为,所以.因为在轴负半轴上,所以,=,.令,则,(当且仅当),而当时,,故的最小值为.【点睛】直线方程有五种形式,常用的形式有点斜式、斜截式、截距式、一般式,垂直于的轴的直线没有点斜式、斜截式和截距式,垂直于轴的直线没有截距式,注意根据题设所给的条件选择合适的方程的形式.直线方程中的最值问题,注意可选择合适的变量(如斜率、倾斜角、动点的横坐标或纵坐标等)构建目标函数,再利用基本不等式或函数的单调性等求目标函数的最值.19、(1);(2).【解析】

(1)由得到,又代入夹角公式,求出的值;(2)利用公式进行模的求值.【详解】(1)因为,所以,因为,因为,所以.(2).【点睛】本题考查数量积的运算及其变形运用,特别注意之间关系的运用与转化,考查基本运算能力.20、(1)(2)这样规定公平,详见解析【解析】

(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型及其概率的计算公式,求得的概率,即可得到结论.【详解】由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x、y.用表示抽取结果,可得,则所有可能的结果有16种,(1)设“取出的两个球上的标号相同”为事件A,则,事件A由4个基本事件组成,故所求概率.(2)设“甲获胜”为事件B,“乙获胜”为事件C,则,.可得,即甲获胜的概率是,乙获胜的概率也是,所以这样规定公平.【点睛】本题主要考查了古典概型的概率的计算及应用,其中解答中认真审题,利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题题.21、(1)(2)存在,最小值是.【解析】

(1)利用等比中项的性质列方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论