2025届浙江省宁波市东恩中学高一数学第二学期期末复习检测试题含解析_第1页
2025届浙江省宁波市东恩中学高一数学第二学期期末复习检测试题含解析_第2页
2025届浙江省宁波市东恩中学高一数学第二学期期末复习检测试题含解析_第3页
2025届浙江省宁波市东恩中学高一数学第二学期期末复习检测试题含解析_第4页
2025届浙江省宁波市东恩中学高一数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省宁波市东恩中学高一数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线x+2y﹣3=0与直线2x+ay﹣1=0垂直,则a的值为()A.﹣1 B.4 C.1 D.﹣42.等比数列中,,,则公比()A.1 B.2 C.3 D.43.设,且,则()A. B. C. D.4.在各项均为正数的数列中,对任意都有.若,则等于()A.256 B.510 C.512 D.10245.已知实数x,y满足约束条件,那么目标函数的最大值是()A.0 B.1 C. D.106.对变量有观测数据,得散点图(1);对变量有观测数据(,得散点图(2),由这两个散点图可以判断()A.变量与正相关,与正相关 B.变量与正相关,与负相关C.变量与负相关,与正相关 D.变量与负相关,与负相关7.已知等差数列的公差,若的前项之和大于前项之和,则()A. B. C. D.8.设长方体的长、宽、高分别为2,1,1,其顶点都在同一个球面上,则该球的表面积为()A. B. C. D.9.要从已编号(1~50)的50枚最新研制的某型导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,3210.函数的最小正周期为,则图象的一条对称轴方程是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在区间上,与角终边相同的角为__________.12.某单位共有200名职工参加了50公里徒步活动,其中青年职工与老年职工的人数比为,中年职工有24人,现采取分层抽样的方法抽取50人参加对本次活动满意度的调查,那么应抽取老年职工的人数为________人.13.等差数列前9项的和等于前4项的和.若,则.14.在赛季季后赛中,当一个球队进行完场比赛被淘汰后,某个篮球爱好者对该队的7场比赛得分情况进行统计,如表:场次得分104为了对这个队的情况进行分析,此人设计计算的算法流程图如图所示(其中是这场比赛的平均得分),输出的的值______.15.已知3a=2,则32a=____,log318﹣a=_____16.已知,则的取值范围是_______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.18.如图,在正方体,中,,,,,分别是棱,,,,的中点.(1)求证:平面平面;(2)求平面将正方体分成的两部分体积之比.19.已知定义域为的函数是奇函数(Ⅰ)求值;(Ⅱ)判断并证明该函数在定义域上的单调性;(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围;(Ⅳ)设关于的函数有零点,求实数的取值范围.20.在中,角,,所对的边分别为,,,已知,,角为锐角,的面积为.(1)求角的大小;(2)求的值.21.如图,在四棱锥中,,,,,,,分别为棱,的中点.(1)证明:平面.(2)证明:平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由两直线垂直的条件,列出方程即可求解,得到答案.【详解】由题意,直线与直线垂直,则满足,解得,故选:A.【点睛】本题主要考查了两直线位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】

将与用首项和公比表示出来,解方程组即可.【详解】因为,且,故:,且,解得:,即,故选:B.【点睛】本题考查求解等比数列的基本量,属基础题.3、B【解析】

利用两角和差正切公式可求得;根据范围可求得;利用两角和差公式计算出;利用两角和差余弦公式计算出结果.【详解】,又本题正确选项:【点睛】本题考查利用三角恒等变换中的两角和差的正余弦和正切公式求解三角函数值的问题,涉及到同角三角函数关系的应用;关键是能够熟练应用两角和差公式进行配凑,求得所需的三角函数值.4、C【解析】

因为,所以,则因为数列的各项均为正数,所以所以,故选C5、D【解析】

根据约束条件,画出可行域,再平移目标函数所在的直线,找到最优点,将最优点的坐标代入目标函数求最值.【详解】画出可行域(如图),平移直线,当目标直线过点时,目标函数取得最大值,.故选:D【点睛】本题主要考查线性规划求最值问题,还考查了数形结合的思想,属于基础题.6、C【解析】

根据增大时的变化趋势可确定结果.【详解】图(1)中,随着的增大,的变化趋势是逐渐在减小,因此变量与负相关;图(2)中,随着的增大,的变化趋势是逐渐在增大,因此变量与正相关.故选:【点睛】本题考查根据散点图判断相关关系的问题,属于基础题.7、C【解析】

设等差数列的前项和为,由并结合等差数列的下标和性质可得出正确选项.【详解】设等差数列的前项和为,由,得,可得,故选:C.【点睛】本题考查等差数列性质的应用,解题时要充分利用等差数列下标和与等差中项的性质,可以简化计算,考查分析问题和解决问题的能力,属于中等题.8、B【解析】

先求出长方体的对角线的长度,即得外接球的直径,再求球的表面积得解.【详解】由题得长方体外接球的直径.故选:B【点睛】本题主要考查长方体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9、B【解析】

对导弹进行平均分组,根据系统抽样的基本原则可得结果.【详解】将50枚导弹平均分为5组,可知每组50÷5=10枚导弹即分组为:1∼10,11∼20,21∼30,31∼40,41∼50按照系统抽样原则可知每组抽取1枚,且编号成公差为10的等差数列由此可确定B正确本题正确选项:B【点睛】本题考查抽样方法中的系统抽样,属于基础题.10、D【解析】

先根据函数的周期求出的值,求出函数的对称轴方程,然后利用赋值法可得出函数图象的一条对称轴方程.【详解】由于函数的最小正周期为,则,,令,解得.当时,函数图象的一条对称轴方程为.故选:D.【点睛】本题考查利用正弦型函数的周期求参数,同时也考查了正弦型函数图象对称轴方程的计算,解题时要结合正弦函数的基本性质来进行求解,考查运算求解能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据与终边相同的角可以表示为这一方法,即可得出结论.【详解】因为,所以与角终边相同的角为.【点睛】本题考查终边相同的角的表示方法,考查对基本概念以及基本知识的熟练程度,考查了数学运算能力,是简单题.12、4【解析】

直接利用分层抽样的比例关系得到答案.【详解】青年职工与老年职工的人数比为,中年职工有24人,故老年职工为,故应抽取老年职工的人数为.故答案为:.【点睛】本题考查了分层抽样的相关计算,意在考查学生的计算能力.13、10【解析】

根据等差数列的前n项和公式可得,结合等差数列的性质即可求得k的值.【详解】因为,且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n项和公式,等差数列性质的应用,属于基础题.14、【解析】

根据题意,模拟程序框图的运行过程,得出该程序运行的是求数据的标准差,即可求得答案.【详解】模拟程序框图的运行过程知,该程序运行的结果是求这个数据的标准差这组数据的平均数是方差是:标准差是故答案为:.【点睛】本题主要考查了根据程序框图求输出结果,解题关键是掌握程序框图基础知识和计算数据方差的解法,考查了分析能力和计算能力,属于中档题.15、42.【解析】

由已知结合指数式的运算性质求解,把化为对数式得到,代入,再由对数的运算性质求解.【详解】∵,∴,由,得,∴.故答案为:,.【点睛】本题考查指数式与对数式的互化,考查对数的运算性质,属于基础题.16、【解析】

本题首先可以根据向量的运算得出,然后等式两边同时平方并化简,得出,最后根据即可得出的取值范围.【详解】设向量与向量的夹角为,因为,所以,即,因为,所以,即,所以的取值范围是.【点睛】本题考查向量的运算以及向量的数量积的相关性质,向量的数量积公式,考查计算能力,是简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)a+b=2;(2)(5,-3).【解析】

(1)求出和的坐标,然后根据两向量共线的等价条件可得所求关系式.(2)求出的坐标,根据得到关于的方程组,解方程组可得所求点的坐标.【详解】由题意知,,.(1)∵三点共线,∴∥,∴,∴.(2)∵,∴,∴,解得,∴点的坐标为.【点睛】本题考查向量共线的应用,解题的关键是把共线表示为向量的坐标的形式,进而转化为数的运算的问题,属于基础题.18、(1)见解析(2)【解析】

(1)先证明平面,再证明平面平面;(2)连接,,则截面右侧的几何体为四棱锥和三棱锥,再求出每一部分的体积得解.【详解】(1)证明:在正方体中,连接.因为,分别是,的中点,所以.因为平面,平面,所以.因为,所以平面,平面,所以,同理,因为,所以平面,因为平面,所以平面平面;(2)连接,,则截面右侧的几何体为四棱锥和三棱锥,设正方体棱长为1,所以,所以平面将正方体分成的两部分体积之比为.【点睛】本题主要考查面面垂直关系的证明和几何体体积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.19、(Ⅰ);(Ⅱ)答案见解析;(Ⅲ)(Ⅳ).【解析】试题分析:(1)根据奇函数性质得,解得值;(2)根据单调性定义,作差通分,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(3)根据奇偶性以及单调性将不等式化为一元二次不等式恒成立问题,利用判别式求实数的取值范围;(4)根据奇偶性以及单调性将方程转化为一元二次方程有解问题,根据二次函数图像与性质求值域,即得实数的取值范围.试题解析:(Ⅰ)由题设,需,∴,∴,经验证,为奇函数,∴.(Ⅱ)减函数证明:任取,,且,则,∵∴∴,;∴,即∴该函数在定义域上是减函数.(Ⅲ)由得,∵是奇函数,∴,由(Ⅱ)知,是减函数∴原问题转化为,即对任意恒成立,∴,得即为所求.(Ⅳ)原函数零点的问题等价于方程由(Ⅱ)知,,即方程有解∵,∴当时函数存在零点.点睛:利用函数性质解不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.20、(1);(2)7.【解析】分析:(1)由三角形面积公式和已知条件求得sinA的值,进而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.详解:(1)∵,∴,∵为锐角,∴;(2)由余弦定理得:.点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.21、(1)见解析(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论