河南省顶尖名校2025届高一数学第二学期期末预测试题含解析_第1页
河南省顶尖名校2025届高一数学第二学期期末预测试题含解析_第2页
河南省顶尖名校2025届高一数学第二学期期末预测试题含解析_第3页
河南省顶尖名校2025届高一数学第二学期期末预测试题含解析_第4页
河南省顶尖名校2025届高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省顶尖名校2025届高一数学第二学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正数满足,则的最小值是()A.9 B.10 C.11 D.122.若长方体三个面的面积分别为2,3,6,则此长方体的外接球的表面积等于()A. B. C. D.3.若,且,则的值是()A. B. C. D.4.已知集合A={x︱x>-2}且,则集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.5.采用系统抽样方法从人中抽取32人做问卷调查,为此将他们随机编号为,分组后在第一组采用简单随机抽样的方法抽到的号码为.抽到的人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为()A. B. C. D.6.已知曲线C的方程为x2+y2=2(x+|y|),直线x=my+4与曲线C有两个交点,则m的取值范围是()A.m>1或m<﹣1 B.m>7或m<﹣7C.m>7或m<﹣1 D.m>1或m<﹣77.已知向量,,则与的夹角为()A. B. C. D.8.若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于()A.1 B.5 C.9 D.49.两数与的等比中项是()A.1 B.-1 C.±1 D.10.下列正确的是()A.若a,b∈R,则B.若x<0,则x+≥-2=-4C.若ab≠0,则D.若x<0,则2x+2-x>2二、填空题:本大题共6小题,每小题5分,共30分。11.在锐角中,内角A,B,C所对的边分别为a,b,c,若的面积为,且,则的周长的取值范围是________.12.如图,在中,,,,则________.13.若函数,的最大值为,则的值是________.14.已知等比数列的公比为2,前n项和为,则=______.15.已知,且为第三象限角,则的值等于______;16.当时,的最大值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂提供了节能降耗技术改造后生产产品过程中的产量(吨)与相应的生产能耗(吨)的几组对照数据.(1)请根据表中提供的数据,用最小二乘法求出关于的线性回归方程;(2)试根据(1)求出的线性回归方程,预测产量为(吨)的生产能耗.相关公式:,.18.已知分别是数列的前项和,且.(1)求数列与的通项公式;(2)求数列的前项和.19.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,,求的面积.20.已知数列满足=(1)若求数列的通项公式;(2)若==对一切恒成立求实数取值范围.21.某算法框图如图所示.(1)求函数的解析式及的值;(2)若在区间内随机输入一个值,求输出的值小于0的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

利用基本不等式可得,然后解出即可.【详解】解:正数,满足,∴,,,当且仅当时取等号,的最小值为9,故选:A.【点睛】本题主要考查基本不等式的应用和一元二次不等式的解法,属于基础题.2、C【解析】

设长方体过一个顶点的三条棱长分别为,,,由已知面积求得,,的值,得到长方体对角线长,进一步得到外接球的半径,则答案可求.【详解】设长方体过一个顶点的三条棱长分别为,,,则,解得,,.长方体的对角线长为.则长方体的外接球的半径为,此长方体的外接球的表面积等于.故选:C.【点睛】本题考查长方体外接球表面积的求法,考查空间想象能力和运算求解能力,求解时注意长方体的对角线长为长方体外接球的直径.3、A【解析】

对两边平方,可得,进而可得,再根据,可知,由此即可求出结果.【详解】因为,所以,所以,所以,又,所以所以.故选:A.【点睛】本题主要考查了同角的基本关系,属于基础题.4、D【解析】

A、B={x|x>2或x<-2},

∵集合A={x|x>-2},

∴A∪B={x|x≠-2}≠A,不合题意;

B、B={x|x≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合题意;

C、B={y|y≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合题意;

D、若B={-1,0,1,2,3},

∵集合A={x|x>-2},

∴A∪B={x|x>-2}=A,与题意相符,

故选D.5、C【解析】从960人中用系统抽样方法抽取32人,则抽样距为k=,因为第一组号码为9,则第二组号码为9+1×30=39,…,第n组号码为9+(n-1)×30=30n-21,由451≤30n-21≤750,得,所以n=16,17,…,25,共有25-16+1=10(人).考点:系统抽样.6、A【解析】

先画出曲线的图象,再求出直线与相切时的,最后结合图象可得的取值范围,得到答案.【详解】如图所示,曲线的图象是两个圆的一部分,由图可知:当直线与曲线相切时,只有一个交点,此时,结合图象可得或.故选:A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中熟练应有直线与圆的位置关系,合理结合图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.7、D【解析】

利用夹角公式计算出两个向量夹角的余弦值,进而求得两个向量的夹角.【详解】设两个向量的夹角为,则,故.故选:D.【点睛】本小题主要考查两个向量夹角的计算,考查向量数量积和模的坐标表示,属于基础题.8、C【解析】试题分析:由韦达定理得,,则,当适当排序后成等比数列时,必为等比中项,故,.当适当排序后成等差数列时,必不是等差中项,当是等差中项时,,解得,;当是等差中项时,,解得,,综上所述,,所以.考点:等差中项和等比中项.9、C【解析】试题分析:设两数的等比中项为,等比中项为-1或1考点:等比中项10、D【解析】对于A,当ab<0时不成立;对于B,若x<0,则x+=-≤-2=-4,当且仅当x=-2时,等号成立,因此B选项不成立;对于C,取a=-1,b=-2,+=-<a+b=-3,所以C选项不成立;对于D,若x<0,则2x+2-x>2成立.故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

通过观察的面积的式子很容易和余弦定理联系起来,所以,求出,所以.再由正弦定理即可将的范围通过辅助角公式化简利用三角函数求出范围即可.【详解】因为的面积为,所以,所以.由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【点睛】此题考察解三角形,熟悉正余弦定理,然后一般求范围的题目转化为求解三角函数值域即可,易错点注意转化后角的范围区间,属于中档题目.12、【解析】

先将转化为和为基底的两组向量,然后通过数量积即可得到答案.【详解】,.【点睛】本题主要考查向量的基本运算,数量积运算,意在考查学生的分析能力和计算能力.13、【解析】

利用两角差的正弦公式化简函数的解析式为,由的范围可得的范围,根据最大值可得的值.【详解】∵函数=2()=,∵,∴∈[,],又∵的最大值为,所以的最大值为,即=,解得.故答案为【点睛】本题主要考查两角差的正弦公式的应用,正弦函数的定义域和最值,属于基础题.14、【解析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.15、【解析】

根据条件以及诱导公式计算出的值,再由的范围计算出的值,最后根据商式关系:求得的值.【详解】因为,所以,又因为且为第三象限角,所以,所以.故答案为:.【点睛】本题考查三角函数中的给值求值问题,中间涉及到诱导公式以及同角三角函数的基本关系,难度一般.三角函数中的求值问题,一定要注意角的范围,避免出现多解.16、-3.【解析】

将函数的表达式改写为:利用均值不等式得到答案.【详解】当时,故答案为-3【点睛】本题考查了均值不等式,利用一正二定三相等将函数变形是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)可以预测产量为(吨)的生产能耗为(吨)【解析】

(1)根据表格中的数据,求出,,,代入回归系数的公式可求得,再根据回归直线过样本中心点即可求解.由(1)将代入即可求解.【详解】(1)由题意,根据表格中的数据,求得,,,,代入回归系数的公式,求得,则,故线性回归方程为.(2)由(1)可知,当时,,则可以预测产量为(吨)的生产能耗为(吨).【点睛】本题考查了线性回归方程,需掌握回归直线过样本中心点这一特征,考查了学生的计算能力,属于基础题.18、(1),,(2)【解析】

(1)分别求出和时的,,再检验即可.(2)利用错位相减法即可求出数列的前项和【详解】(1)当时,,当时,.检验:当时,,所以.因为,所以.当时,,即,当时,整理得到:.所以数列是以首项为,公差为的等差数列.所以,即.(2)…………①,……②,①②得:……,,.【点睛】本题第一问考查由数列前项和求数列的通项公式,第二问考查数列求和中的错位相减法,属于难题.19、(1);(2).【解析】

(1)利用边角互化思想得,由结合两角和的正弦公式可求出的值,于此得出角的大小;(2)由余弦定理可计算出,再利用三角形的面积公式可得出的面积.【详解】(1)∵是的内角,∴且,又由正弦定理:得:,化简得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面积为.【点睛】本题考查正弦定理边角互化的思想,考查余弦定理以及三角形的面积公式,本题巧妙的地方在于将配凑为,避免利用方程思想求出边的值,考查计算能力,属于中等题.20、(1)=;(2).【解析】

(1)由,结合可得数列为等差数列,进而可得所求;(2)由得,利用累加法并结合等比数列的前项和公式求出,化简得,再利用数列的单调性求出的最大值即可得出结论.【详解】(1)由,可得=.∴数列是首项为1,公差为4的等差数列,∴.(2)由及,得=,∴,∴,又满足上式,∴.∵对一切恒成立,即对一切恒成立,∴对一切恒成立.又数列为单调递减数列,∴,∴,∴实数取值范围为.【点睛】本题主要考查等差数列与等比数列的通项公式与前项和公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论