版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市杨浦区市级名校2025届高一数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.己知弧长的弧所对的圆心角为弧度,则这条弧所在的圆的半径为()A. B. C. D.2.已知函数与的图象上存在关于轴对称的点,则实数的取值范围是().A. B. C. D.3.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.40 B.36 C.30 D.204.下列赋值语句正确的是()A.S=S+i2 B.A=-AC.x=2x+1 D.P=5.圆关于原点对称的圆的方程为()A. B.C. D.6.在四边形中,如果,,那么四边形的形状是()A.矩形 B.正方形 C.菱形 D.直角梯形7.如图所示,在正方体中,侧面对角线,上分别有一点E,F,且,则直线EF与平面ABCD所成的角的大小为()A.0° B.60° C.45° D.30°8.函数,的值域是()A. B. C. D.9.已知圆心在轴上的圆经过,两点,则的方程为()A. B.C. D.10.若直线与直线互相平行,则的值等于()A.0或或3 B.0或3 C.0或 D.或3二、填空题:本大题共6小题,每小题5分,共30分。11.若等比数列的各项均为正数,且,则等于__________.12.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为________.13.无限循环小数化成最简分数为________14.设,过定点A的动直线和过定点B的动直线交于点,则的最大值是.15.已知,,,则的最小值为________.16.由正整数组成的数列,分别为递增的等差数列、等比数列,,记,若存在正整数()满足,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是等差数列,满足,,且数列的前n项和.(1)求数列和的通项公式;(2)令,数列的前n项和为,求证:.18.如图,在直三棱柱中,,,分别是,,的中点.(1)求证:平面;(2)若,求证:平面平面.19.如图,在△ABC中,AB=8,AC=3,∠BAC=60°,以点A为圆心,r=2为半径作一个圆,设PQ为圆A的一条直径.(1)请用表示,用表示;(2)记∠BAP=θ,求的最大值.20.如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.21.已知数列为单调递增数列,,其前项和为,且满足.(1)求数列的通项公式;(2)若数列,其前项和为,若成立,求的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用弧长公式列出方程直接求解,即可得到答案.【详解】由题意,弧长的弧所对的圆心角为2弧度,则,解得,故选D.【点睛】本题主要考查了圆的半径的求法,考查弧长公式等基础知识,考查了推理能力与计算能力,是基础题.2、A【解析】若函数f(x)=a﹣x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的图象是开口朝上,且以直线x=1为对称轴的抛物线,故当x=1时,g(x)取最小值﹣2,当x=2时,函数取最大值﹣1,故a∈[﹣2,﹣1],故选:A.点睛:图像上存在关于轴对称的点,即方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,转化为方程有解求参的问题,变量分离,画出函数图像,使得函数图像和常函数图像有交点即可;这是解决方程有解,图像有交点,函数有零点的常见方法。3、C【解析】试题分析:利用分层抽样的比例关系,设从乙社区抽取户,则,解得.考点:考查分层抽样.4、B【解析】在程序语句中乘方要用“^”表示,所以A项不正确;乘号“*”不能省略,所以C项不正确;D项中应用SQR(x)表示,所以D项不正确;B选项是将变量A的相反数赋给变量A,则B项正确.选B.5、D【解析】
根据已知圆的方程可得其圆心,进而可求得其关于原点对称点,利用圆的标准方程即可求解.【详解】由圆,则圆心为,半径,圆心为关于原点对称点为,所以圆关于原点对称的圆的方程为.故选:D【点睛】本题考查了根据圆心与半径求圆的标准方程,属于基础题.6、C【解析】试题分析:因为,所以,即四边形的对角线互相垂直,排除选项AD;又因为,所以四边形对边平行且相等,即四边形为平行四边形,但不能确定邻边垂直,所以只能确定为菱形.考点:1.向量相等的定义;2.向量的垂直;7、A【解析】
证明一条直线与一个平面平行,除了可以根据直线与平面平行的判定定理以外,通常还可以通过平面与平面平行进行转化,比如过E作EG∥AB交BB1于点G,连接GF,根据三角形相似比可知:平面EFG∥平面ABCD.而EF在平面EFG中,故可以证得:EF∥平面ABCD.【详解】解:过E作EG∥AB交BB1于点G,连接GF,则,∵B1E=C1F,B1A=C1B,∴.∴FG∥B1C1∥BC.又∵EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD.而EF在平面EFG中,∴EF∥平面ABCD.故答案为A【点睛】本题主要考查空间直线和平面平行的判定,根据面面平行的性质是解决本题的关键.8、A【解析】
由的范围求出的范围,结合余弦函数的性质即可求出函数的值域.【详解】∵,∴,∴当,即时,函数取最大值1,当即时,函数取最小值,即函数的值域为,故选A.【点睛】本题主要考查三角函数在给定区间内求函数的值域问题,通过自变量的范围求出整体的范围是解题的关键,属基础题.9、A【解析】
由圆心在轴上设出圆心坐标,设出圆的方程,将,两点坐标代入,即可求得圆心坐标和半径,进而得圆的方程.【详解】因为圆心在轴上,设圆心坐标为,半径为设圆的方程为因为圆经过,两点代入可得解方程求得所以圆C的方程为故选:A【点睛】本题考查了圆的方程求法,关键是求出圆心和半径,属于基础题.10、D【解析】
根据直线的平行关系,列方程解参数即可.【详解】由题:直线与直线互相平行,所以,,解得:或.经检验,当或时,两条直线均平行.故选:D【点睛】此题考查根据直线平行关系求解参数的取值,需要熟记公式,注意考虑直线重合的情况.二、填空题:本大题共6小题,每小题5分,共30分。11、50【解析】由题意可得,=,填50.12、【解析】
利用来求的通项.【详解】,化简得到,填.【点睛】一般地,如果知道的前项和,那么我们可利用求其通项,注意验证时,(与有关的解析式)的值是否为,如果是,则,如果不是,则用分段函数表示.13、【解析】
利用无穷等比数列求和的方法即可.【详解】.故答案为:【点睛】本题主要考查了无穷等比数列的求和问题,属于基础题型.14、5【解析】试题分析:易得.设,则消去得:,所以点P在以AB为直径的圆上,,所以,.法二、因为两直线的斜率互为负倒数,所以,点P的轨迹是以AB为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.15、1【解析】
由题意整体代入可得,由基本不等式可得.【详解】由,,,则.当且仅当=,即a=3且b=时,取得最小值1.故答案为:1.【点睛】本题考查基本不等式求最值,整体法并凑出可用基本不等式的形式是解决问题的关键,属于基础题.16、262【解析】
根据条件列出不等式进行分析,确定公比、、的范围后再综合判断.【详解】设等比数列公比为,等差数列公差为,因为,,所以;又因为,分别为递增的等差数列、等比数列,所以且;又时显然不成立,所以,则,即;因为,,所以;因为,所以;由可知:,则,;又,所以,则有根据可解得符合条件的解有:或;当时,,解得不符,当时,解得,符合条件;则.【点睛】本题考查等差等比数列以及数列中项的存在性问题,难度较难.根据存在性将变量的范围尽量缩小,通过不等式确定参变的取值范围,然后再去确定符合的解,一定要注意带回到原题中验证,看是否满足.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)证明见解析【解析】
(1)计算,得到,再计算的通项公式得到答案.(2),利用裂项求和得到得到证明.【详解】(1),,.,.是等差数列,所以,所以.当时,,又,所以,当时,,符合,所以的通项公式是.(2).所以,即.【点睛】本题考查了数列的通项公式,裂项求和,意在考查学生对于数列公式方法的灵活运用.18、(1)详见解析(2)详见解析【解析】
(1)利用中位线定理可得∥,从而得证;(2)先证明,从而有平面,进而可得平面平面.【详解】(1)因为分别是的中点,所以∥.因为平面,平面,所以∥平面.(2)在直三棱柱中,平面,因为平面,所以.因为,且是的中点,所以.因为,平面,所以平面.因为平面,所以平面平面.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.19、(1);(2)22.【解析】
利用向量的三角形法则即可求得答案由,,可得,利用向量的数量积的坐标表示的表达式,利用三角函数知识可求最值【详解】(1)=-.(2)∵∠BAC=60°,设∠BAP=θ,∴∠CAP=60°+θ,∵AB=8,AC=3,AP=2,∴=()·(-)=8-6cos(θ+60°)+16cosθ=3sinθ+13cosθ+8=14sin(θ+φ)+8,.∴当sin(θ+φ)=1时,的最大值为22.【点睛】本题主要考查了三角函数与平面向量的综合,而辅助角公式是解决三角函数的最值的常用方法,体现了转化的思想在解题中的应用.20、(1)见解析;(2).【解析】
(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.21、(1);(2)10.【解析】
(1)先根据和项与通项关系得项之间递推关系,再根据等差数列定义及其通项公式得数列的通项公式;(2)先根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年盐边县公安局直接考核招聘警务辅助人员考试真题
- 怀化市辰溪县辰阳镇公益性岗位招聘真题
- 跨境电商谈判情景演练
- 汽车革脉络行业分析研究报告
- 有关幼儿园教师培训心得体会怎么写
- 石化装置污水深度处理可行性研究报告书
- 【经典版】年产2万吨花生制品技改扩建项目可行性研究报告
- 销售类求职自荐信范文5篇
- 月度工作总结范本5篇
- 沙石买卖合同书
- 瓦斯抽放站施工组织设计(共23页)
- 数学趣味小故事(课堂PPT)
- 江苏省示范性县级教师发展中心建设标准
- (完整版)机场报批程序指南(流程)
- 小学低年级数棋教案
- 长链、中链脂肪乳区别
- 起重吊装作业指导书
- pMD19-T载体说明书
- 客户投诉产品质量问题处理
- 足球 课件 (共14张PPT)
- 对相对性状的杂交实验ppt课件
评论
0/150
提交评论