2025届贵州省麻江县一中高一数学第二学期期末经典模拟试题含解析_第1页
2025届贵州省麻江县一中高一数学第二学期期末经典模拟试题含解析_第2页
2025届贵州省麻江县一中高一数学第二学期期末经典模拟试题含解析_第3页
2025届贵州省麻江县一中高一数学第二学期期末经典模拟试题含解析_第4页
2025届贵州省麻江县一中高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省麻江县一中高一数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.2.已知点A(1,0),B(0,1),C(–2,–3),则△ABC的面积为A.3 B.2 C.1 D.3.设等比数列的前项和为,若,,则()A.14 B.18 C.36 D.604.已知向量,,,且,则()A. B. C. D.5.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为6.正四棱柱的高为3cm,体对角线长为cm,则正四棱柱的侧面积为()A.10 B.24 C.36 D.407.要从已编号(1~50)的50枚最新研制的某型导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,328.下列大小关系正确的是()A.B.C.D.9.函数的最小正周期是()A. B. C. D.10.在正三棱锥中,,则侧棱与底面所成角的正弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的前项和为,若,且,则_____.12.已知,,那么的值是________.13.已知,,,则的最小值为__________.14.计算:__________.15.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为_________.16.若不等式对于任意都成立,则实数的取值范围是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥中,平面,底面是平行四边形,若,.(Ⅰ)求证:平面平面;(Ⅱ)求棱与平面所成角的正弦值.18.已知函数,作如下变换:.(1)分别求出函数的对称中心和单调增区间;(2)写出函数的解析式、值域和最小正周期.19.已知圆(为坐标原点),直线.(1)过直线上任意一点作圆的两条切线,切点分别为,求四边形面积的最小值.(2)过点的直线分别与圆交于点(不与重合),若,试问直线是否过定点?并说明理由.20.如图,在平面四边形中,已知,,,为线段上一点.(1)求的值;(2)试确定点的位置,使得最小.21.已知圆,为坐标原点,动点在圆外,过点作圆的切线,设切点为.(1)若点运动到处,求此时切线的方程;(2)求满足的点的轨迹方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【点睛】本题考查平面向量数量积的性质及运算,属于中档题.2、A【解析】

由两点式求得直线的方程,利用点到直线距离公式求得三角形的高,由两点间距离公式求得的长,从而根据三角形面积公式可得结果.【详解】∵点A(1,0),B(0,1),∴直线AB的方程为x+y–1=0,,又∵点C(–2,–3)到直线AB的距离为,∴△ABC的面积为S=.故选A.【点睛】本题主要考查两点间的距离公式,点到直线的距离公式、三角形面积公式以及直线方程的应用,意在考查综合运用所学知识解答问题的能力,属于中档题.3、A【解析】

由已知结合等比数列的求和公式可求,,q2,然后整体代入到求和公式即可求.【详解】∵等比数列{an}中,S2=2,S4=6,∴q≠1,则,联立可得,2,q2=2,S62×(1﹣23)=1.故选:A.【点睛】本题主要考查了等比数列的求和公式的简单应用,考查了整体代入的运算技巧,属于基础题.4、C【解析】

由可得,代入求解可得,则,进而利用诱导公式求解即可【详解】由可得,即,所以,因为,所以,则,故选:C【点睛】本题考查垂直向量的应用,考查里利用诱导公式求三角函数值5、C【解析】

A.时无最小值;

B.令,由,可得,即,令,利用单调性研究其最值;

C.令,令,利用单调性研究其最值;

D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;

B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;

D.当时,,无最小值,故D不正确.

故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.6、B【解析】

设正四棱柱,设底面边长为,由正四棱柱体对角线的平方等于从同一顶点出发的三条棱的平方和,可得关于的方程.【详解】如图,正四棱柱,设底面边长为,则,解得:,所以正四棱柱的侧面积.【点睛】本题考查正棱柱的概念,即底面为正方形且侧棱垂直于底面的几何体,考查几何体的侧面积计算.7、B【解析】

对导弹进行平均分组,根据系统抽样的基本原则可得结果.【详解】将50枚导弹平均分为5组,可知每组50÷5=10枚导弹即分组为:1∼10,11∼20,21∼30,31∼40,41∼50按照系统抽样原则可知每组抽取1枚,且编号成公差为10的等差数列由此可确定B正确本题正确选项:B【点睛】本题考查抽样方法中的系统抽样,属于基础题.8、C【解析】试题分析:因为,,,所以。故选C。考点:不等式的性质点评:对于指数函数和对数函数,若,则函数都为增函数;若,则函数都为减函数。9、C【解析】

根据三角函数的周期公式,进行计算,即可求解.【详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【点睛】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.10、B【解析】

利用正三棱锥的性质,作出侧棱与底面所成角,利用直角三角形进行计算.【详解】连接P与底面正△ABC的中心O,因为是正三棱锥,所以面,所以为侧棱与底面所成角,因为,所以,所以,故选B.【点睛】本题考查线面角的计算,考查空间想象能力、逻辑推理能力及计算求解能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、4或1024【解析】

当时得到,当时,代入公式计算得到,得到答案.【详解】比数列的前项和为,当时:易知,代入验证,满足,故当时:故答案为:4或1024【点睛】本题考查了等比数列,忽略掉的情况是容易发生的错误.12、【解析】

首先根据题中条件求出角,然后代入即可.【详解】由题知,,所以,故.故答案为:.【点睛】本题考查了特殊角的三角函数值,属于基础题.13、25【解析】

变形后,利用基本不等式可得.【详解】当且仅当,即,时取等号.故答案为:25【点睛】本题考查了利用基本不等式求最值,属于基础题.14、0【解析】

直接利用数列极限的运算法则,分子分母同时除以,然后求解极限可得答案.【详解】解:,故答案为:0.【点睛】本题主要考查数列极限的运算法则,属于基础知识的考查.15、0.5【解析】

由互斥事件的概率加法求出射手在一次射击中超过8环的概率,再利用对立事件的概率求出不超过8环的概率即可.【详解】由题意,射中10环、9环、8环的概率分别为0.2、0.3、0.1,所以射手的一次射击中超过8环的概率为:0.2+0.3=0.5故射手的一次射击中不超过8环的概率为:1-0.5=0.5故答案为0.5【点睛】本题主要考查了对立事件的概率,属于基础题.16、【解析】

利用换元法令(),将不等式左边构造成一次函数,根据一次函数的性质列不等式组,解不等式组求得的取值范围.【详解】令,,则.由已知得,不等式对于任意都成立.又令,则,即,解得.所以所求实数的取值范围是.故答案为:【点睛】本小题主要考查不等式恒成立问题的求解策略,考查三角函数的取值范围,考查一次函数的性质,考查化归与转化的数学思想方法,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见证明;(Ⅱ)【解析】

(Ⅰ)先证明平面,再证明平面平面.(Ⅱ)以为原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图空间直角坐标系,利用向量法求棱与平面所成角的正弦值.【详解】解:(Ⅰ)∵平面,∴,∵,,,∴,∴,∴平面,又∵平面,∴平面平面.(Ⅱ)以为原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图空间直角坐标系,则,,,,于是,,,设平面的一个法向量为,则,解得,∴,设与平面所成角为,则.【点睛】本题主要考查空间垂直关系的证明,考查线面角的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1),;(2),,.【解析】

(1)由,直接利用对称中心和增区间公式得到答案.(2)根据变换得到函数的解析式为,再求值域和最小正周期.【详解】由题意知:(1)由得对称中心,由,得:单调增区间为,(2)所求解析式为:0值域:最小正周期:.【点睛】本题考查了三角函数的对称中心,单调区间,函数变换,周期,值域,综合性强,意在考查学生对于三角函数公式和性质的灵活运用.19、(1)12;(2)过定点,理由见解析【解析】

(1)由,得过点的切线长,所以四边形的面积为,即可得到本题答案;(2)设直线的方程为,则直线的方程为.联立方程,消去,整理得,得,,所以,令,即可得到本题答案.【详解】(1)由题意可得圆心到直线的距离为,从而,则过点的切线长.故四边形的面积为,即四边形面积的最小值为12.(2)因为,所以直线与直线的斜率都存在,且不为0.设直线的方程为,则直线的方程为.联立方程,消去,整理得解得或,则.同理可得.所以.令,得,解得.取,可以证得,所以直线过定点.当时,轴,易知与均为正三角形,直线的方程为,也过定点.综上,直线过定点.【点睛】本题主要考查与椭圆相关的四边形面积的范围问题以及与椭圆有关的直线过定点问题,联立直线方程与椭圆方程,利用韦达定理是解决此类问题的常用方法.20、(1);(2)见解析【解析】

(1)通过,,可得,从而通过可以求出,再确定的值.(2)法一:设(),可以利用基底法将表示为t的函数,然后求得最小值;法二:建立平面直角坐标系,设(),然后表示出相关点的坐标,从而求得最小值.【详解】(1),,,,,即,,(2)法一:设(),则,,当时,即时,最小法二:建立如图平面直角坐标系,则,,,,设(),则,当时,即时,最小.【点睛】本题主要考查向量的数量积运算,数形结合思想及函数思想,意在考查学生的划归能力和分析能力,难度较大.21、(1)或;(2).【解析】

解:把圆C的方程化为标准方程为(x+1)2+(y-2)2=4,∴圆心为C(-1,2),半径r=2.(1)当l的斜率不存在时,此时l的方程为x=1,C到l的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论