版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省滁州市定远育才学校2025届高一数学第二学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,满足,,且在方向上的投影是-1,则实数()A.1 B.-1 C.2 D.-22.中,,则是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形3.在ΔABC中,内角A,B,C所对的边分别为a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π4.已知为两条不同的直线,为两个不同的平面,给出下列命题:①若,,则;②若,,则;③若,,则;④若,,,则.其中正确的命题是()A.②③ B.①③ C.②④ D.①④5.设矩形的长为,宽为,其比满足∶=,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定6.若,则下列不等式成立的是()A. B.C. D.7.在锐角中,若,,,则()A. B. C. D.8.如图,在中,,是边上的高,平面,则图中直角三角形的个数是()A. B. C. D.9.在中,为的三等分点,则()A. B. C. D.10.将函数的图象向左平移个长度单位后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.________12.在中,两直角边和斜边分别为a,b,c,若则实数x的取值范围是________.13.设a>1,b>1.若关于x,y的方程组无解,则的取值范围是.14.对任意的θ∈0,π2,不等式115.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.16.设函数,则的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)证明:数列为等差数列;(2)求数列的前项和.18.已知直角梯形中,,,,,,过作,垂足为,分别为的中点,现将沿折叠,使得.(1)求证:(2)在线段上找一点,使得,并说明理由.19.已知直线(1)若直线过点,且.求直线的方程.(2)若直线过点A(2,0),且,求直线的方程及直线,,轴围成的三角形的面积.20.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,,求的面积.21.某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由投影的定义计算.【详解】由题意,解得.故选:A.【点睛】本题考查向量数量积的几何意义,掌握向量投影的定义是解题关键.2、C【解析】
由平面向量数量积运算可得,即,得解.【详解】解:在中,,则,即,则为钝角,所以为钝角三角形,故选:C.【点睛】本题考查了平面向量数量积运算,重点考查了向量的夹角,属基础题.3、A【解析】
利用正弦定理可求得sinB=12【详解】因为c=2bsinC,所以sinC=2sinBsinC,所以sinB=1【点睛】本题主要考查正弦定理的运用,难度较小.4、B【解析】
利用空间中线面平行、线面垂直、面面平行、面面垂直的判定与性质即可作答.【详解】垂直于同一条直线的两个平面互相平行,故①对;平行于同一条直线的两个平面相交或平行,故②错;若,,,则或与为异面直线或与为相交直线,故④错;若,则存在过直线的平面,平面交平面于直线,,又因为,所以,又因为平面,所以,故③对.故选B.【点睛】本题主要考查空间中,直线与平面平行或垂直的判定与性质,以及平面与平面平行或垂直的判定与性质,属于基础题型.5、A【解析】甲批次的平均数为0.617,乙批次的平均数为0.6136、B【解析】
利用不等式的性质,进行判断即可.【详解】因为,故由均值不等式可知:;因为,故;因为,故;综上所述:.故选:B.【点睛】本题考查均值不等式及利用不等式性质比较大小.7、D【解析】
由同角三角函数关系式,先求得,再由余弦定理即可求得的值.【详解】因为为锐角三角形,由同角三角函数关系式可得又因为,由余弦定理可得代入可得所以故选:D【点睛】本题考查了同角三角函数关系式应用,余弦定理求三角形的边,属于基础题.8、C【解析】
根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形.【详解】①平面,,都是直角三角形;②是直角三角形;③是直角三角形;④由得平面,可知:也是直角三角形.综上可知:直角三角形的个数是个,故选C.【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.9、B【解析】试题分析:因为,所以,以点为坐标原点,分别为轴建立直角坐标系,设,又为的三等分点所以,,所以,故选B.考点:平面向量的数量积.【一题多解】若,则,即有,为边的三等分点,则,故选B.10、B【解析】
试题分析:由题意得,,令,可得函数的图象对称轴方程为,取是轴右侧且距离轴最近的对称轴,因为将函数的图象向左平移个长度单位后得到的图象关于轴对称,的最小值为,故选B.考点:两角和与差的正弦函数及三角函数的图象与性质.【方法点晴】本题主要考查了两角和与差的正弦函数及三角函数的图象与性质,将三角函数图象向左平移个单位,所得图象关于轴对称,求的最小值,着重考查了三角函数的化简、三角函数图象的对称性等知识的灵活应用,本题的解答中利用辅助角公式,化简得到函数,可取出函数的对称轴,确定距离最近的点,即可得到结论.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据极限的运算法则,合理化简、运算,即可求解.【详解】由极限的运算,可得.故答案为:【点睛】本题主要考查了极限的运算法则的应用,其中解答熟记极限的运算法则,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】
计算得到,根据得到范围.【详解】两直角边和斜边分别为a,b,c,则,则,则,故.故答案为:.【点睛】本题考查了正弦定理和三角函数的综合应用,意在考查学生的综合应用能力.13、【解析】试题分析:方程组无解等价于直线与直线平行,所以且.又,为正数,所以(),即取值范围是.考点:方程组的思想以及基本不等式的应用.14、-4,5【解析】1sin2θ+4cos2点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15、分层抽样.【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.16、【解析】
根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】
(1)将已知条件凑配成,由此证得数列为等差数列.(2)由(1)求得数列的通项公式,进而求得的表达式,利用分组求和法求得.【详解】(1)证明:∵∴又∵∴所以数列是首项为1,公差为2的等差数列;(2)由(1)知,,所以.所以【点睛】本小题主要考查根据递推关系式证明等差数列,考查分组求和法,属于中档题.18、(1)见解析(2)【解析】试题分析:(Ⅰ)由已知得:面面;(II)分析可知,点满足时,面BDR⊥面BDC.
理由如下先计算再求得,
,再证面面面.试题解析:(Ⅰ)由已知得:面面
(II)分析可知,点满足时,面BDR⊥面BDC.
理由如下:取中点,连接
容易计算在中∵可知,
∴在中,
又在中,为中点面,
∴面面.19、(1);(2);【解析】
(1)根据已知求得的斜率,由点斜式求出直线的方程.(2)根据已知求得的斜率,由点斜式写出直线的方程,联立的方程,求得两条直线交点的坐标,再由三角形面积公式求得三角形面积.【详解】解:(1)∵∥,∴直线的斜率是又直线过点,∴直线的方程为,即(2)∵,∴直线的斜率是又直线过点,∴直线的方程为即由得与的交点为∴直线,,轴围成的三角形的面积是【点睛】本小题主要考查两条直线平行、垂直时,斜率的对应关系,考查直线的点斜式方程,考查两条直线交点坐标的求法,考查三角形的面积公式,属于基础题.20、(1);(2).【解析】
(1)利用边角互化思想得,由结合两角和的正弦公式可求出的值,于此得出角的大小;(2)由余弦定理可计算出,再利用三角形的面积公式可得出的面积.【详解】(1)∵是的内角,∴且,又由正弦定理:得:,化简得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面积为.【点睛】本题考查正弦定理边角互化的思想,考查余弦定理以及三角形的面积公式,本题巧妙的地方在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三年级语文上册《一次成功的实验》教案
- 中国休闲零食电商行业市场全景调研及投资规划建议报告
- 小班语言公开课《圆》活动教案
- 大学生自我介绍范文集合七篇
- 银行客服工作总结(15篇)
- 建筑实习报告模板合集七篇
- 乒乓球比赛作文300字汇编十篇
- 消防安全在我心中演讲稿5篇
- 后备干部培训心得体会800字
- 辞职报告范文汇编15篇
- 2024秋期国家开放大学本科《纳税筹划》一平台在线形考(形考任务一至五)试题及答案
- 房租收条格式(3篇)
- 期末试卷(试题)2024-2025学年培智生活语文二年级上册
- 《技术规程》范本
- DBJ50T-城镇排水系统评价标准
- 红色简约中国英雄人物李大钊课件
- 小学师德考评细则
- 软件定义网络(SDN)实战教程课件
- 2024版《大学生职业生涯规划与就业指导》 课程教案
- 专题10阅读理解、拓展探究-2022-2023学年八年级数学上册期末选填解答压轴题必刷专题训练(华师大版)(原卷版+解析)
- 西师大版五年级上册小数混合运算题100道及答案
评论
0/150
提交评论