版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州一中2025届高一下数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,是两条不同的直线,,是两个不同的平面,若,,则下列命题正确的是A.若,,则B.若,且,则C.若,,则D.若,且,则2.已知的模为1,且在方向上的投影为,则与的夹角为()A.30° B.60° C.120° D.150°3.直线的倾斜角不可能为()A. B. C. D.4.()A. B. C. D.5.若三点共线,则()A.13 B. C.9 D.6.设集合,,则()A. B. C. D.7.已知直线过点且与直线垂直,则该直线方程为()A. B.C. D.8.数列{an}的通项公式是an=(n+2),那么在此数列中()A.a7=a8最大 B.a8=a9最大C.有唯一项a8最大 D.有唯一项a7最大9.如图,在中,已知D是边延长线上一点,若,点E为线段的中点,,则()A. B. C. D.10.点直线与线段相交,则实数的取值范围是()A. B.或C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.若,则________.12.已知角的终边上一点P落在直线上,则______.13.已知,且,则的取值范围是____________.14.对于数列,若存在,使得,则删去,依此操作,直到所得到的数列没有相同项,将最后得到的数列称为原数列的“基数列”.若,则数列的“基数列”的项数为__________________.15.给出以下四个结论:①过点,在两轴上的截距相等的直线方程是;②若是等差数列的前n项和,则;③在中,若,则是等腰三角形;④已知,,且,则的最大值是2.其中正确的结论是________(写出所有正确结论的番号).16.已知点,,若直线与线段有公共点,则实数的取值范围是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,(1)求的最小正周期;(2)若,求的最大值和最小值,并写出相应的x的值.18.在中,内角A,B,C所对的边分别为a,b,c;已知.(1)求角B的大小;(2)若外接圆的半径为2,求面积的最大值.19.近年来,石家庄经济快速发展,跻身新三线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,石家庄的交通优势在同级别的城市内无能出其右.为了调查石家庄市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.(1)求,的值;(2)求被调查的市民的满意程度的平均数,中位数(保留小数点后两位),众数;(3)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.20.已知函数f(x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范围21.在中,内角、、所对的边分别为,,,且满足.(1)求角的大小;(2)若,是方程的两根,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用面面、线面位置关系的判定和性质,直接判定.【详解】解:对于A,若n∥α,m∥β,则α∥β或α与β相交,故错;对于B,若α∩β=l,且m⊥l,则m与β不一定垂直,故错;对于C,若m∥n,m∥β,则α与β位置关系不定,故错;对于D,∵α∩β=l,∴l⊂β,∵m∥l,则m∥β,故正确.故选D.【点睛】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间相互关系的合理运用.2、A【解析】
根据投影公式,直接得到结果.【详解】,.故选A.【点睛】本题考查了投影公式,属于简单题型.3、D【解析】
根据直线方程,分类讨论求得直线的斜率的取值范围,进而根据倾斜角和斜率的关系,即可求解,得到答案.【详解】由题意,可得当时,直线方程为,此时倾斜角为;当时,直线方程化为,则斜率为:,即,又由,解得或,又由且,所以倾斜角的范围为,显然A,B都符合,只有D不符合,故选D.【点睛】本题主要考查了直线方程的应用,以及直线的倾斜角和斜率的关系,着重考查了分类讨论思想,以及推理与运算能力.4、A【解析】
将根据诱导公式化为后,利用两角和的正弦公式可得.【详解】.故选:A【点睛】本题考查了诱导公式,考查了两角和的正弦公式,属于基础题.5、D【解析】
根据三点共线,有成立,解方程即可.【详解】因为三点共线,所以有成立,因此,故本题选D.【点睛】本题考查了斜率公式的应用,考查了三点共线的性质,考查了数学运算能力.6、C【解析】分析:利用一元二次不等式的解法化简集合,由子集的定义可得结果.详解:,,,故选C.点睛:本题主要考查解一元二次不等式,集合的子集的定义,属于容易题,在解题过程中要注意考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.7、A【解析】
根据垂直关系求出直线斜率为,再由点斜式写出直线。【详解】由直线与直线垂直,可知直线斜率为,再由点斜式可知直线为:即.故选A.【点睛】本题考查两直线垂直,属于基础题。8、A【解析】,所以,令,解得n≤7,即n≤7时递增,n>7递减,所以a1<a2<a3<…<a7=a8>a9>….所以a7=a8最大.本题选择A选项.9、B【解析】
由,,,,代入化简即可得出.【详解】,带人可得,可得,故选B.【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.10、C【解析】
直线经过定点,斜率为,数形结合利用直线的斜率公式,求得实数的取值范围,得到答案.【详解】如图所示,直线经过定点,斜率为,当直线经过点时,则,当直线经过点时,则,所以实数的取值范围,故选C.【点睛】本题主要考查了直线过定点问题,以及直线的斜率公式的应用,着重考查了数形结合法,以及推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求,再代入求值得解.【详解】由题得所以.故答案为【点睛】本题主要考查共轭复数和复数的模的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.12、【解析】
由于角的终边上一点P落在直线上,可得,根据二倍角公式以及三角函数基本关系,可得,代入,可求得结果.【详解】因为角的终边上一点P落在直线上,所以,.故答案为:【点睛】本题考查同角三角函数的基本关系,巧用“1”是解决本题的关键.13、【解析】
利用正弦函数的定义域求得值域,即的范围,再根据反余弦函数的定义可求得的取值范围.【详解】因为且,所以,则根据反余弦函数的定义可得,则的取值范围是.故答案为:【点睛】本题考查了正弦函数的定义域和值域,考查了反余弦函数的定义,属于基础题.14、10【解析】
由题意可得,只需计算所有可能取值的个数即可.【详解】因为求的可能取值个数,由周期性,故只需考虑的情况即可.此时.一共19个取值,故只需分析,又由,故,,即不同的取值个数一共为个.即“基数列”分别为和共10项.故答案为10【点睛】本题主要考查余弦函数的周期性.注意到随着的增大的值周期变化,故只需考虑一个周期内的情况.15、②④【解析】
①中满足题意的直线还有,②中根据等差数列前项和的特点,得到,③中根据同角三角函数关系进行化简计算,从而进行判断,④中根据基本不等式进行判断.【详解】①中过点,在两轴上的截距相等的直线还可以过原点,即两轴上的截距都为,即直线,所以错误;②中是等差数列的前n项和,根据等差数列前项和的特点,,是一个不含常数项的二次式,从而得到,即,所以正确;③中在中,若,则可得,所以可得或,所以可得或,从而得到为直角三角形或等腰三角形,所以错误;④中因为,,且,由基本不等式,得到,所以,当且仅当,即时,等号成立.所以,即的最大值是,所以正确.故答案为:②④【点睛】本题考查截距相等的直线的特点,等差数列前项和的特点,判断三角形形状,基本不等式求积的最大值,属于中档题.16、【解析】
根据直线方程可确定直线过定点;求出有公共点的临界状态时的斜率,即和;根据位置关系可确定的范围.【详解】直线可整理为:直线经过定点,又直线的斜率为的取值范围为:本题正确结果:【点睛】本题考查根据直线与线段的交点个数求解参数范围的问题,关键是能够明确直线经过的定点,从而确定临界状态时的斜率.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)时最大值为2,时最小值【解析】
(1)由二倍角公式和辅助角公式可得,再由周期公式,可得所求值(2)由的范围,可得的范围,由于余弦函数的图象和性质,可得所求最值.【详解】(1)函数,可得的最小正周期为;(2),,可得,,可得当即时,可得取得最大值2;当,即时,可得取得最小值.【点睛】本题考查二倍角公式和两角差的余弦函数,考查余弦函数的图象和性质,考查运算能力,属于基础题.18、(1)(2)【解析】
(1)利用正弦定理与余弦的差角公式运算求解即可.(2)根据正弦定理可得,再利用余弦定理与基本不等式求得再代入面积求最大值即可.【详解】解:(1)在中,由正弦定理得,得,又∴.即,∴,又,∴.(2)结合(1)由正弦定理可知,由余弦定理可知,所以当且仅当时等号成立,所以,所以面积的最大值为.【点睛】本题主要考查了正余弦定理与三角形面积公式在解三角形中的运用.同时考查了根据基本不等式求解三角形面积的最值问题.属于中档题.19、(1),;(2)平均数约为,中位数约为,众数约为75;(3).【解析】
(1)根据题目频率分布直方图频率之和为1,已知其中,可得答案;(2)利用矩形的面积等于频率为0.5可估算中位数所在的区间,利用估算中位数定义,矩形最高组估算纵数可得答案;(3)利用古典概型的概率计算公式求解即可.【详解】解:研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如图的频率分布直方图,其中,(1),其中,解得:,;(2)随机抽取了1000名市民进行调查,则估计被调查的市民的满意程度的平均数:,由题中位数在70到80区间组,,,中位数:,众数:75,故平均数约为,中位数约为,众数约为75;(3)若按照分层抽样从,,,中随机抽取8人,则,共80人抽2人,,共240人抽6人,再从这8人中随机抽取2人,则共有种不同的结果,其中至少有1人的分数在,共种不同的结果,所以至少有1人的分数在,的概率为:.【点睛】本题主要考查频率分布直方图的应用,属于中档题.20、(1);(2)[0,].【解析】
(1)f(x)=·sin2x-2(sinx+cosx)(sinx-cosx)=sin2x+cosxsinx-sin2x+cos2x=sinxcosx+cos2x,∴f(α)====.(2)由(1)知,f(x)=c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑运输BT施工合同
- 品牌推广墙体壁画施工合同
- 安防监控员聘用合同样本
- 互联网医疗项目商务标
- 城市绿化管井施工合同
- 企业研发创新顾问聘用合同
- 虚拟现实招投标合同管理职责
- 医疗合同管理
- 商场施工合同
- 2024年多人合租住宿合同
- 安全生产专(兼)职管理人员职责
- 湖南省长沙市长沙市长郡集团联考2024-2025学年九年级上学期11月期中语文试题(含答案)
- 家具制造业售后服务预案
- 电子产品维修合同范本1
- 《篮球原地双手胸前传接球》教案 (三篇)
- 第7章-机器学习
- 2024年T电梯修理考试100题及答案
- 第1课 课题一《课外生活小调查·周末生活我采访》(教案)-2024-2025学年三年级上册综合实践活动浙教版
- 世界的气温和降水课件
- DBJ-T15-60-2019建筑地基基础检测规范
- Unit2 School things Lesson 3 (教学设计)-2024-2025学年人教精通版(2024)英语三年级上册
评论
0/150
提交评论