上海市储能中学2025届高一数学第二学期期末考试模拟试题含解析_第1页
上海市储能中学2025届高一数学第二学期期末考试模拟试题含解析_第2页
上海市储能中学2025届高一数学第二学期期末考试模拟试题含解析_第3页
上海市储能中学2025届高一数学第二学期期末考试模拟试题含解析_第4页
上海市储能中学2025届高一数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市储能中学2025届高一数学第二学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知一个三角形的三边是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最小角的余弦值是()A. B.C. D.2.甲:(是常数)乙:丙:(、是常数)丁:(、是常数),以上能成为数列是等差数列的充要条件的有几个()A.1 B.2 C.3 D.43.如图,在圆心角为直角的扇形中,分别以为直径作两个半圆,在扇形内随机取一点,则此点取自阴影部分的概率是()A. B. C. D.4.已知,,则()A. B. C. D.5.在中,,,,则()A. B.或 C.或 D.6.在数列中,已知,,则一定()A.是等差数列 B.是等比数列 C.不是等差数列 D.不是等比数列7.过点且与直线垂直的直线方程是.A. B. C. D.8.下面的程序运行后,输出的值是()A.90 B.29 C.13 D.549.在中,已知,则的面积为()A. B. C. D.10.若,均为锐角,且,,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知三棱锥的外接球的球心恰好是线段的中点,且,则三棱锥的体积为__________.12.已知圆上有两个点到直线的距离为3,则半径的取值范围是________13.已知在中,角的大小依次成等差数列,最大边和最小边的长是方程的两实根,则__________.14.已知点是所在平面内的一点,若,则__________.15.在数列中,,则___________.16.若,则=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某商品监督部门对某厂家生产的产品进行抽查检测估分,监督部门在所有产品中随机抽取了部分产品检测评分,得到如图所示的分数频率分布直方图:(1)根据频率分布直方图,估计该厂家产品检测评分的平均值;(2)该厂决定从评分值超过90的产品中取出5件产品,选择2件参加优质产品评选,若已知5件产品中有3件来自车间,有2件产品来自车间,试求这2件产品中含车间产品的概率.18.已知函数的图象关于直线对称,且图象上相邻两个最高点的距离为.(1)求与的值;(2)若,求的值.19.数列中,,(为常数,1,2,3,…),且.(1)求c的值;(2)求证:①;②;(3)比较++…+与的大小,并加以证明.20.已知函数f(1)求fx(2)若fx<m+2在x∈0,21.(1)任意向轴上这一区间内投掷一个点,则该点落在区间内的概率是多少?(2)已知向量,,若,分别表示一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

设的最大角为,最小角为,可得出,,由题意得出,由二倍角公式,利用正弦定理边角互化思想以及余弦定理可得出关于的方程,求出的值,可得出的值.【详解】设的最大角为,最小角为,可得出,,由题意得出,,所以,,即,即,将,代入得,解得,,,则,故选B.【点睛】本题考查利用正弦定理和余弦定理解三角形,解题时根据对称思想设边长可简化计算,另外就是充分利用二倍角公式进行转化是解本题的关键,综合性较强.2、D【解析】

由等差数列的定义和求和公式、通项公式的关系,以及性质,即可得到结论.【详解】数列是等差数列,设公差为,由定义可得(是常数),且(是常数),,令,即(、是常数),等差数列通项,令,即(、是常数),综上可得甲乙丙丁都对.故选:D.【点睛】本题考查等差数列的定义和通项公式、求和公式的关系,考查充分必要条件的定义,考查推理能力,属于基础题.3、A【解析】试题分析:设扇形半径为,此点取自阴影部分的概率是,故选B.考点:几何概型.【方法点晴】本题主要考查几何概型,综合性较强,属于较难题型.本题的总体思路较为简单:所求概率值应为阴影部分的面积与扇形的面积之比.但是,本题的难点在于如何求阴影部分的面积,经分析可知阴影部分的面积可由扇形面积减去以为直径的圆的面积,再加上多扣一次的近似“椭圆”面积.求这类图形面积应注意切割分解,“多还少补”.4、D【解析】由题意可得,即,则,所以,即,也即,所以,应选答案D.点睛:解答本题的关键是借助题设中的条件获得,进而得到,求得,从而求出使得问题获解.5、B【解析】

利用正弦定理求出,然后利用三角形的内角和定理可求出.【详解】由正弦定理得,得,,,则或.当时,由三角形的内角和定理得;当时,由三角形的内角和定理得.因此,或.故选B.【点睛】本题考查利用正弦定理和三角形的内角和定理求角,解题时要注意大边对大角定理来判断出角的大小关系,考查计算能力,属于基础题.6、C【解析】

依据等差、等比数列的定义或性质进行判断。【详解】因为,,,所以一定不是等差数列,故选C。【点睛】本题主要考查等差、等比数列定义以及性质的应用。7、A【解析】

根据与已知直线垂直的直线系方程可假设直线为,代入点解得直线方程.【详解】设与直线垂直的直线为:代入可得:,解得:所求直线方程为:,即本题正确选项:【点睛】本题考查利用两条直线的垂直关系求解直线方程的问题,属于基础题.8、D【解析】

根据程序语言的作用,模拟程序的运行结果,即可得到答案.【详解】模拟程序的运行,可得,执行循环体,,执行循环体,,执行循环体,,执行循环体,,退出循环,输出的值为1.故选:D.【点睛】本题考查利用模拟程序执行过程求输出结果,考查逻辑推理能力和运算求解能力,属于基础题.9、B【解析】

根据三角形的面积公式求解即可.【详解】的面积.

故选:B【点睛】本题主要考查了三角形的面积公式,属于基础题.10、B【解析】

先利用两角和的余弦公式求出,通过条件可求得,进而可得.【详解】解:,因为,则,故,故选:B.【点睛】本题考查两角和的正切公式,注意角的范围的确定,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意得出平面后,由计算可得答案.【详解】因为三棱锥的外接球的球心恰好是的中点,所以和都是直角三角形,又因为,所以,,又,则平面.因为,所以三角形为边长是的等边三角形,所以.故答案为:【点睛】本题考查了直线与平面垂直的判定,考查了三棱锥与球的组合,考查了三棱锥的体积公式,属于中档题.12、【解析】

由圆上有两个点到直线的距离为3,先求出圆心到直线的距离,得到不等关系式,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,又因为圆上有两个点到直线的距离为3,则,解得,即圆的半径的取值范围是.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中合理应用圆心到直线的距离,结合图象得到半径的不等关系式是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.13、【解析】

本题首先可根据角的大小依次成等差数列计算出,然后根据最大边和最小边的长是方程的两实根得到以及,最后根据余弦定理即可得出结果.【详解】因为角成等差数列,所以,又因为,所以.设方程的两根分别为、,则,由余弦定理可知:,所以.【点睛】本题考查根据余弦定理求三角形边长,考查等差中项以及韦达定理的应用,余弦定理公式为,体现了综合性,是中档题.14、【解析】

设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.15、-1【解析】

首先根据,得到是以,的等差数列.再计算其前项和即可求出,的值.【详解】因为,.所以数列是以,的等差数列.所以.所以,,.故答案为:【点睛】本题主要考查等差数列的判断和等差数列的前项和的计算,属于简单题.16、【解析】.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用平均数=每个小矩形面积小矩形底边中点横坐标之和,即可求解.(2)设这5件产品分别为,其中1,2为车间生产的产品,利用列举法求出基本事件的个数,再利用古典概型的概率公式即可求解.【详解】解:(1)依题意,该厂产品检测的平均值.(2)设这5件产品分别为,其中1,2为车间生产的产品,从5人中选出2人,所有的可能的结果有:,,,,,,,,,,共10个,其中含有车间产品的基本事件有:,,,,,,,共7个,所以取出的2件产品中含车间产品的概率为.【点睛】本小题主要考查频率分布直方图、平均数、古典概型等基础知识,考查抽象概括能力、数据处理能力、运算求解能力、应用意识,考查统计与概率思想、分类与整合思想等.18、(1),;(2)【解析】

(1)根据最高顶点间的距离求出周期得,根据对称轴求出;(2)根据题意求出,结合诱导公式及和差公式求解.【详解】解:(1)因的图象上相邻两个最高点的距离为,∴的最小正周期,从而.又因的图象关于直线对称,∴.∵,∴,此时.(2)由(1)得,∴,由得,∴,∴.【点睛】此题考查根据三角函数图像性质求参数的值,结合诱导公式和差公式处理三角求值的问题.19、(1);(2)①见证明;②见证明;(3)++…+,证明见解析【解析】

(1)将代入,结合可求出的值;(2)可知,,即可证明结论;(3)由题意可得,从而可得到,求和可得,然后作差,通过讨论可比较二者大小.【详解】(1)由题意:,.而,得,即,解得或,因为,所以满足题意.(2)因为,所以.则.,因为,,所以,所以.(3)由,可得,从而,所以.因为,所以,所以.,,,,当n=1时,,故;当n=2时,,;当n≥3时,,则,.【点睛】本题主要考查了数列的递推关系式和数列的求和,考查了不等式的证明,考查了学生的逻辑推理能力与计算能力,属于难题.20、(1)kπ-5π12【解析】

(1)注意到,f=-(sin2x+3cos2x)+1于是,fx的最小正周期T=由2kπ-π故fx的单调递减区间为kπ-(2)由x∈0,π6于是,当sin2x+π3=32时,要使fx<m+2恒成立,只需fxmax<m+2故m的取值范围是(-1-321、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论