




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省秦皇岛市数学高一下期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,则与夹角的大小为()A. B. C. D.2.若直线与曲线有公共点,则的取值范围是()A. B.C. D.3.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc24.若直线过,,则该直线的斜率为A.2 B.3 C.4 D.55.已知数列中,,则=()A. B. C. D.6.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a47.如图为A、B两名运动员五次比赛成绩的茎叶图,则他们的平均成绩和方差的关系是()A., B.,C., D.,8.若实数满足,则的最小值为()A.4 B.8 C.16 D.329.在面积为S的平行四边形ABCD内任取一点P,则三角形PBD的面积大于的概率为()A. B. C. D.10.等比数列的前n项和为,已知,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式,那么使得其前项和大于7.999的的最小值为______.12.据两个变量、之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系_____(答是与否).13.已知不等式x2-x-a>0的解集为x|x>3或14.一个社会调查机构就某地居民收入调查了10000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在(元)内的应抽出___人.15.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________16.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各自随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:、、、、、,整理得到如下频率分布直方图:(1)试估计甲高中学生一周内平均每天学习数学的时间的中位数甲(精确到0.01);(2)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值甲与乙及方差甲与乙的大小关系(只需写出结论),并计算其中的甲、甲(同一组中的数据用该组区间的中点值作代表).18.在公差是整数的等差数列中,,且前项和.(1)求数列的通项公式;(2)令,求数列的前项和.19.已知圆关于直线对称,半径为,且圆心在第一象限.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于不同两点、,且,求实数的值.20.在中,角的对边分别是,且满足.(1)求角的大小;(2)若,边上的中线的长为,求的面积.21.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF平面BEG
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
。分别求出,,,利用即可得出答案.【详解】设与的夹角为故选:D【点睛】本题主要考查了求向量的夹角,属于基础题.2、D【解析】
将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:由圆心到直线的距离等于半径2,可得:解得或结合图象可得故选D【点睛】本题主要考查了直线与圆的位置关系,考查了转化能力,在解题时运用点到直线的距离公式来计算,数形结合求出结果,本题属于中档题3、C【解析】
根据a、b的范围,取特殊值带入判断即可.【详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【点睛】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.4、A【解析】
由直线的斜率公式,即可求解,得到答案.【详解】由题意,直线过点,,由斜率公式,可得斜率,故选A.【点睛】本题主要考查了斜率公式的应用,其中解答中熟记直线的斜率公式是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】
,故选B.6、C【解析】
在验证时,左端计算所得的项,把代入等式左边即可得到答案.【详解】解:用数学归纳法证明,
在验证时,把当代入,左端.
故选:C.【点睛】此题主要考查数学归纳法证明等式的问题,属于概念性问题.7、D【解析】
根据题中数据,直接计算出平均值与方差,即可得出结果.【详解】由题中数据可得,,,所以;又,,所以.故选D【点睛】本题主要考查平均数与方差的比较,熟记公式即可,属于基础题型.8、B【解析】
由可以得到,利用基本不等式可求最小值.【详解】因为,故,因为,故,故,当且仅当时等号成立,故的最小值为8,故选B.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.9、A【解析】
转化条件求出满足要求的P点的范围,求出面积比即可得解.【详解】如图,设P到BD距离为h,A到BD距离为H,则,,满足条件的点在和中,所求概率.故选:A.【点睛】本题考查了几何概型的概率计算,属于基础题.10、A【解析】设公比为q,则,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
直接利用数列的通项公式,建立不等式,解不等式求出结果.【详解】解:数列的通项公式,则:,所以:当时,即:,当时,成立,即:的最小值为1.故答案为:1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,主要考查学生的运算能力和转化能力,属于基础题型.12、否【解析】
根据散点图的分布来判断出两个变量是否具有线性相关关系.【详解】由散点图可知,散点图分布无任何规律,不在一条直线附近,所以,这两个变量没有线性相关关系,故答案为否.【点睛】本题考查利用散点图判断两变量之间的线性相关关系,考查对散点图概念的理解,属于基础题.13、6【解析】
由题意可知-2,3为方程x2【详解】由题意可知-2,3为方程x2-x-a=0的两根,则-2×3=-a,即故答案为:6【点睛】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.14、25【解析】由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人.故答案为25.15、2【解析】
根据条件,利用余弦定理可建立关于c的方程,即可解出c.【详解】由余弦定理得,即,解得或(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.16、【解析】
正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【点睛】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)甲乙,甲乙,甲=,甲=【解析】
(1)根据每组小矩形的面积确定中位数所在区间,即可求解;(2)根据直方图特征即可判定甲乙,甲乙,根据平均数和方差的公式分别计算求值.【详解】(1)由甲高中频率分布直方图可得:第一组频率0.1,第二组频率0.2,第三组频率0.3,所以中位数在第三组,甲;(2)根据两个频率分布直方图可得:甲乙,甲乙甲=甲=【点睛】此题考查频率分布直方图,根据两组直方图特征判断中位数和方差的大小关系,求中位数,平均数和方差,关键在于熟练掌握相关数据的求法,准确计算得解.18、(1);(2).【解析】
(1)设等差数列的公差为,由题意知,的最小值为,可得出,可得出的取值范围,结合,可求出的值,再利用等差数列的通项公式可求出;(2)将数列的通项公式表示为分段形式,即,于是得出可得出的表达式.【详解】(1)设等差数列的公差为,则,由题意知,的最小值为,则,,所以,解得,,,因此,;(2).当时,,则,;当时,,则,.综上所述:.【点睛】本题考查等差数列通项公式以及绝对值分段求和,解题的关键在于将的最小值转化为与项相关的不等式组进行求解,考查化归与转化数学思想,属于中等题.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由题得和,解方程即得圆的方程;(Ⅱ)取的中点,则,化简得,即得m的值.【详解】(Ⅰ)由,得圆的圆心为,圆关于直线对称,①.圆的半径为,②又圆心在第一象限,,,由①②解得,,故圆的方程为.(Ⅱ)取的中点,则,,,即,又,解得.【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系和向量的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)(2)【解析】
(1)先后利用正弦定理余弦定理化简得到,即得B的大小;(2)设,则,所以,利用余弦定理求出m的值,再求的面积.【详解】解:(1)因为,由正弦定理,得,即.由余弦定理,得.因为,所以.(2)因为,所以.设,则,所以.在中,由余弦定理得,得,即,整理得,解得.所以.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.21、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】
(Ⅰ)点F,G,H的位置如图所示(Ⅱ)平面BEG∥平面ACH.证明如下因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG又FG∥EH,FG=EH,所以BC∥EH,BC=EH于是BCEH为平行四边形所以BE∥CH又CH平面ACH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业团队激励管理办法
- 交通项目用地管理办法
- 住宅修缮基金管理办法
- 中药处方集成管理办法
- 住宅装修装饰管理办法
- 住宅售后维修管理办法
- 事业人员管理办法旷工
- 企业资产收益管理办法
- 企业员工保障管理办法
- 教育政策在校园科技推广中的作用
- 汉字文化解密学习通超星期末考试答案章节答案2024年
- 2024年7月1日实施新版医疗器械采购、收货、验收、贮存、销售、出库、运输和售后服务工作程序
- 045.糖尿病患者血脂管理中国专家共识2024版
- 多组学整合分析方法
- 2024劳务分包合同范本下载
- 中国移动公开竞聘考试题库(含答案)
- 退学费和解协议书模板
- 【课件】2025届高三生物一轮复习备考策略研讨
- 某集团国企改革三年行动工作台账
- HJ 636-2012 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法
- 《公平竞争审查条例》微课
评论
0/150
提交评论