2025届黑龙江省鸡西市虎林市东方红林业局中学高一数学第二学期期末质量跟踪监视试题含解析_第1页
2025届黑龙江省鸡西市虎林市东方红林业局中学高一数学第二学期期末质量跟踪监视试题含解析_第2页
2025届黑龙江省鸡西市虎林市东方红林业局中学高一数学第二学期期末质量跟踪监视试题含解析_第3页
2025届黑龙江省鸡西市虎林市东方红林业局中学高一数学第二学期期末质量跟踪监视试题含解析_第4页
2025届黑龙江省鸡西市虎林市东方红林业局中学高一数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省鸡西市虎林市东方红林业局中学高一数学第二学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对变量有观测数据,得散点图(1);对变量有观测数据(,得散点图(2),由这两个散点图可以判断()A.变量与正相关,与正相关 B.变量与正相关,与负相关C.变量与负相关,与正相关 D.变量与负相关,与负相关2.已知等比数列的公比为正数,且,则()A. B. C. D.3.下列函数中,值域为的是()A. B. C. D.4.某市家庭煤气的使用量和煤气费(元)满足关系,已知某家庭今年前三个月的煤气费如下表:月份用气量煤气费一月份元二月份元三月份元若四月份该家庭使用了的煤气,则其煤气费为()元A. B. C. D.5.在棱长为1的正方体中,点在线段上运动,则下列命题错误的是()A.异面直线和所成的角为定值 B.直线和平面平行C.三棱锥的体积为定值 D.直线和平面所成的角为定值6.如图,设是正六边形的中心,则与相等的向量为()A. B. C. D.7.已知函数,则()A.2 B.-2 C.1 D.-18.已知圆(为圆心,且在第一象限)经过,,且为直角三角形,则圆的方程为()A. B.C. D.9.已知点,点是圆上任意一点,则面积的最大值是()A. B. C. D.10.一个多面体的三视图如图所示.设在其直观图中,M为AB的中点,则几何体的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若向量与垂直,则__________.12.在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若,则________.13.已知在中,,则____________.14.设,,为三条不同的直线,,为两个不同的平面,下列命题中正确的是______.(1)若,,,则;(2)若,,,则;(3)若,,,,则;(4)若,,,则.15.若三棱锥的底面是以为斜边的等腰直角三角形,,,则该三棱锥的外接球的表面积为________.16.若是等比数列,,,且公比为整数,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD="40"m,则电视塔的高度为多少?18.已知为等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,若成等比数列,求正整数的值.19.已知函数.(1)求的值;(2)若,求的取值范围.20.如图,在四棱锥中,平面平面,四边形为矩形,,点,分别是,的中点.求证:(1)直线∥平面;(2)平面平面.21.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励.图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率;(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当天甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据增大时的变化趋势可确定结果.【详解】图(1)中,随着的增大,的变化趋势是逐渐在减小,因此变量与负相关;图(2)中,随着的增大,的变化趋势是逐渐在增大,因此变量与正相关.故选:【点睛】本题考查根据散点图判断相关关系的问题,属于基础题.2、D【解析】设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,故选D.3、B【解析】

依次判断各个函数的值域,从而得到结果.【详解】选项:值域为,错误选项:值域为,正确选项:值域为,错误选项:值域为,错误本题正确选项:【点睛】本题考查初等函数的值域问题,属于基础题.4、C【解析】由题意得:C=4,将(25,14),(35,19)代入f(x)=4+B(x﹣A),得:∴A=5,B=,故x=20时:f(20)=4+(20﹣5)=11.5.故选:C.点睛:这是函数的实际应用题型,根据题目中的条件和已知点得到分段函数的未知量的值,首先得到函数表达式,再根据题意让求自变量为20时的函数值,求出即可。实际应用题型,一般是先根据题意构建模型,列出表达式,根据条件求解问题即可。5、D【解析】

结合条件和各知识点对四个选项逐个进行分析,即可得解.【详解】,在棱长为的正方体中,点在线段上运动易得平面,平面,,故这两个异面直线所成的角为定值,故正确,直线和平面平行,所以直线和平面平行,故正确,三棱锥的体积还等于三棱锥的体积,而平面为固定平面且大小一定,,而平面点到平面的距离即为点到该平面的距离,三棱锥的体积为定值,故正确,由线面夹角的定义,令与的交点为,可得即为直线和平面所成的角,当移动时这个角是变化的,故错误故选【点睛】本题考查了异面直线所成角的概念、线面平行及线面角等,三棱锥的体积的计算可以进行顶点轮换及线面平行时,直线上任意一点到平面的距离都相等这一结论,即等体积法的转换.6、D【解析】

容易看出,四边形是平行四边形,从而得出.【详解】根据图形看出,四边形是平行四边形故选:【点睛】本题考查相等向量概念辨析,属于基础题.7、B【解析】

根据分段函数的表达式,直接代入即可得到结论.【详解】由分段函数的表达式可知,则,故选:.【点睛】本题主要考查函数值的计算,根据分段函数的表达式求解是解决本题的关键,属于容易题.8、D【解析】

设且,半径为,根据题意列出方程组,求得的值,即可求解.【详解】依题意,圆经过点,可设且,半径为,则,解得,所以圆的方程为.【点睛】本题主要考查了圆的标准方程的求解,其中解答中熟记圆的标准方程的形式,以及合理应用圆的性质是解答的关键,着重考查了运算与求解能力,属于基础题.9、B【解析】

求出直线的方程,计算出圆心到直线的距离,可知的最大高度为,并计算出,最后利用三角形的面积公式可得出结果.【详解】直线的方程,且,圆的圆心坐标为,半径长为,圆心到直线的距离为,所以,点到直线的距离的最大值为,因此,面积的最大值为,故选B.【点睛】本题考查三角形面积的最值问题,考查圆的几何性质,当直线与圆相离时,若圆的半径为,圆心到直线的距离为,则圆上一点到直线距离的最大值为,距离的最小值为,要熟悉相关结论的应用.10、D【解析】

利用棱柱的体积减去两个棱锥的体积,求解即可.【详解】由题意可知几何体C−MEF的体积:VADF−BCE−VF−AMCD−VE−MBC=.故选:D.【点睛】本题考查简单空间图形的三视图及体积计算,根据三视图求得几何体的棱长及关系,利用几何体体积公式即可求解,考查运算能力和空间想象能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,所以,解得.12、【解析】

由题意得出,结合诱导公式,二倍角公式求解即可.【详解】,则角的终边可能在第一、二象限由图可知,无论角的终边在第一象限还是第二象限,都有故答案为:【点睛】本题主要考查了利用二倍角的余弦公式以及诱导公式化简求值,属于基础题.13、【解析】

根据可得,根据商数关系和平方关系可解得结果.【详解】因为,所以且,又,所以,所以,因为,所以.故答案为:.【点睛】本题考查了三角函数的符号法则,考查了同角公式中的商数关系和平方关系式,属于基础题.14、(1)【解析】

利用线线平行的传递性、线面垂直的判定定理判定.【详解】(1),,,则,正确(2)若,,,则,错误(3)若,则不成立,错误(4)若,,,则,错误【点睛】本题主要考查线面垂直的判定定理判定,考查了空间想象能力,属于中档题.15、【解析】

由已知计算后知也是以为斜边的直角三角形,这样的中点到棱锥四个顶点的距离相等,即为外接球的球心,从而很容易得球的半径,计算出表面积.【详解】因为,所以是等腰直角三角形,且为斜边,为的中点,因为底面是以为斜边的等腰直角三角形,所以,点即为球心,则该三棱锥的外接圆半径,故该三棱锥的外接球的表面积为.【点睛】本题考查球的表面积,考查三棱锥与外接球,解题关键是找到外接球的球心,证明也是以为斜边的直角三角形,利用直角三角形的性质是本题的关键.也是寻找外接球球心的一种方法.16、512【解析】

由题设条件知和是方程的两个实数根,解方程并由公比q为整数,知,,由此能够求出公比,从而得到.【详解】是等比数列,

,,

,,

和是方程的两个实数根,

解方程,

得,,

公比q为整数,

,,

,解得,

.故答案为:512【点睛】本题考查等比数列的通项公式的求法,利用了等比数列下标和的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、40m.【解析】试题分析:本题是解三角形的实际应用题,根据题意分析出图中的数据,即∠ADB=30°,∠ACB=45°,所以,可以得出在Rt△ABD中,BD=AB,在Rt△ABC中,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,代入数据,运算即可得出结果.试题解析:根据题意得,在Rt△ABD中,∠ADB=30°,∴BD=AB,在Rt△ABC中,∠ACB=45°,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,∴3AB2=AB2+CD2-2AB·CDcos120°整理得AB2-20AB-800=0,解得,AB=40或AB=-20(舍).即电视塔的高度为40m考点:解三角形.18、:(Ⅰ)(Ⅱ)【解析】试题分析:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1,从而得到{an}的通项公式.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1),再由=a1Sk+1,求得正整数k的值.解:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1.∴{an}的通项公式an=1+(n﹣1)1=1n.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1).∵若a1,ak,Sk+1成等比数列,∴=a1Sk+1,∴4k1=1(k+1)(k+3),k="2"或k=﹣1(舍去),故k=2.考点:等比数列的性质;等差数列的通项公式.19、(1);(2)【解析】

(1)将)化简为,代入从而求得结果.(2)由,得,从而确定的范围.【详解】(1)(2)由,得解得,,即的取值范围是【点睛】本题主要考查三角函数的化简求值,不等式的求解,意在考查学生的运算能力和分析能力,难度不大.20、(1)见解析(2)见解析【解析】

(1)取中点,连接,,证得,利用线面平行的判定定理,即可证得直线∥平面;(2)利用线面垂直的判定定理,证得,再利用面面垂直的判定定理,即可得到平面平面.【详解】(1)取中点,连接,.在中,,分别为,中点,则且,又四边形为矩形,为中点,且,所以,故四边形为平行四边形,从而,又,,所以直线.(2)因为矩形,所以,又平面,面,,所以,又,则,又,,所以,又,所以平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.21、(1),(2)80人,13.25千步,(3)星期二【解析】

(1)根据统计图统计出甲乙两人合格的天

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论