




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省临沂市兰陵县第一中学高一下数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还”.其意思为:“有一个人走378里路,第1天健步行走,从第2天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,可求出此人每天走多少里路.”那么此人第5天走的路程为()A.48里 B.24里 C.12里 D.6里2.已知,下列不等式中成立的是()A. B. C. D.3.对具有线性相关关系的变量,有观测数据,已知它们之间的线性回归方程是,若,则()A. B. C. D.4.将函数的图象向右平移个单位长度后得到函数的图象,若当时,的图象与直线恰有两个公共点,则的取值范围为()A. B. C. D.5.已知且,则为()A. B. C. D.6.设数列是公差不为零的等差数列,它的前项和为,且、、成等比数列,则等于()A. B. C. D.7.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.8.在中,角,,的对边分别为,,,且.则()A. B.或 C. D.9.若,则A. B. C. D.10.函数图象的一条对称轴在内,则满足此条件的一个值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数y=tan12.函数的最小正周期为.13.已知正实数x,y满足,则的最小值为________.14.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.15.已知数列的前项和是,且,则______.(写出两个即可)16.已知求______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.18.的内角的对边分别为,已知.(1)求;(2)若,求边上的高的长.19.已知圆的半径是2,圆心为.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.20.已知等差数列的前n项和为,且,.(1)求;(2)设数列的前n项和为,求证:.21.已知一个几何体是由一个直角三角形绕其斜边旋转一周所形成的.若该三角形的周长为12米,三边长由小到大依次为a,b,c,且b恰好为a,c的算术平均数.(1)求a,b,c;(2)若在该几何体的表面涂上一层油漆,且每平方米油漆的造价为5元,求所涂的油漆的价格.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】记每天走的路程里数为{an},由题意知{an}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选C.2、A【解析】
逐个选项进行判断即可.【详解】A选项,因为,所以.当时即不满足选项B,C,D.故选A.【点睛】此题考查不等式的基本性质,是基础题.3、A【解析】
先求出,再由线性回归直线通过样本中心点即可求出.【详解】由题意,,因为线性回归直线通过样本中心点,将代入可得,所以.故选:A.【点睛】本题主要考查线性回归直线通过样本中心点这一知识点的应用,属常规考题.4、C【解析】
根据二倍角和辅助角公式化简可得,根据平移变换原则可得;当时,;利用正弦函数的图象可知若的图象与直线恰有两个公共点可得,解不等式求得结果.【详解】由题意得:由图象平移可知:当时,,,,,又的图象与直线恰有两个公共点,解得:本题正确选项:【点睛】本题考查根据交点个数求解角的范围的问题,涉及到利用二倍角和辅助角公式化简三角函数、三角函数图象平移变换原则的应用等知识;关键是能够利用正弦函数的图象,采用数形结合的方式确定角所处的范围.5、B【解析】由题意得,因为,即,所以,又,又,且,所以,故选B.6、A【解析】
设等差数列的公差为,根据得出与的等量关系,即可计算出的值.【详解】设等差数列的公差为,由于、、成等比数列,则有,所以,,化简得,因此,.故选:A.【点睛】本题考查等差数列前项和中基本量的计算,解题的关键就是结合题意得出首项与公差的等量关系,考查计算能力,属于基础题.7、D【解析】
设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【点睛】本题考查平面向量数量积的性质及运算,属于中档题.8、A【解析】
利用余弦定理和正弦定理化简已知条件,求得的值,即而求得的大小.【详解】由于,所以,由余弦定理和正弦定理得,即,由于是三角形的内角,所以为正数,所以,为三角形的内角,所以.故选:A【点睛】本小题主要考查正弦定理和余弦定理边角互化,考查三角形的内角和定理,考查两角和的正弦公式,属于基础题.9、B【解析】
分析:由公式可得结果.详解:故选B.点睛:本题主要考查二倍角公式,属于基础题.10、A【解析】
求出函数的对称轴方程,使得满足在内,解不等式即可求出满足此条件的一个φ值.【详解】解:函数图象的对称轴方程为:xk∈Z,函数图象的一条对称轴在内,所以当k=0时,φ故选A.【点睛】本题是基础题,考查三角函数的基本性质,不等式的解法,考查计算能力,能够充分利用基本函数的性质解题是学好数学的前提.二、填空题:本大题共6小题,每小题5分,共30分。11、{【解析】
解方程12【详解】由题得12x+故答案为{x|x≠2kπ+【点睛】本题主要考查正切型函数的定义域的求法,意在考查学生对该知识的理解掌握水平,属于基础题.12、【解析】试题分析:,所以函数的周期等于考点:1.二倍角降幂公式;2.三角函数的周期.13、4【解析】
将变形为,展开,利用基本不等式求最值.【详解】解:,当时等号成立,又,得,此时等号成立,故答案为:4.【点睛】本题考查基本不等式求最值,特别是掌握“1”的妙用,是基础题.14、【解析】
设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【点睛】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.15、或【解析】
利用已知求的公式,即可算出结果.【详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【点睛】本题主要考查利用与的关系公式,即,求的方法应用.16、23【解析】
直接利用数量积的坐标表示求解.【详解】由题得.故答案为23【点睛】本题主要考查平面向量的数量积的计算,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)或.【解析】
分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.18、(1)(2)【解析】
(1)首先由正弦定理,我们可以将条件化成角度问题,再通过两角和差的正弦公式,即可以得出的正切值,又因为在三角形中,从而求出的值.(2)由第一问得出,我们能求出,而,从而求出.【详解】(1)根据题意因为,所以得,即所以,又因为所以.(2)因为所以又的面积为:可得:【点睛】解三角形题中,我们常根据边的齐次,会利用正弦定理进行边化角,然后通过恒等变形,变成角相关等量关系,作为面积问题,我们初中更多是用底与高的处理,高中能用正弦形式表示,两者统一一起,又能得出相应的等量关系.19、(1);(2)或.【解析】
(1)直接根据圆的标准式方程,写出圆的方程即可;(2)设.由等于1.即,解得即可.【详解】解:(1)已知圆的半径是2,圆心为.圆的方程:;(2)设.的最大值等于7,等于1..解得或,即或.【点睛】本题考查了圆的方程,点与圆的位置关系,属于中档题.20、(1);(2)见解析【解析】
(1)设公差为,由,可得解得,,从而可得结果;(2)由(1),,则有,则,利用裂项相消法求解即可.【详解】(1)设公差为d,由题解得,.所以.(2)由(1),,则有.则.所以.【点睛】本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.21、(1)3,4,1;(2)元.【解析】
(1)由题意,根据周长、三边关系、勾股定理,a,b,c,建立方程组,解得即可.(2)根据题意,旋转得到的几何体为由底面半径为米,母线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水上保密文件运输服务合同
- 二零二五报社美缝施工与室内空气质量检测合同
- 网球场翻新班组协议
- 2025年特殊功能复合材料及制品项目合作计划书
- 2025年地震数据集合工作站系统合作协议书
- 品牌羽绒服企业县域市场拓展与下沉战略研究报告
- 黄锑矿企业数字化转型与智慧升级战略研究报告
- 教学用教具企业ESG实践与创新战略研究报告
- 2025重庆市建筑安全员-C证考试题库
- 智慧城市综合管理系统建设合同
- 高血压患者不遵医饮食行为的原因分析及对策
- 《煤制油技术》课程标准(煤化工技术)
- 膝关节僵硬个案护理
- 高速公路服务区管理系统搭建
- 2024年中国华能澜沧江水电股份有限公司招聘笔试参考题库含答案解析
- 《民间皮影》课程标准
- 2024年江苏食品药品职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 国内新能源汽车在共享经济领域的应用与前景
- 大庆油田环境保护与可持续发展
- 电气设备维修
- 森林专业扑火队培训课件
评论
0/150
提交评论