版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省外国语学校高一下数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆与交于两点,其中一交点的坐标为,两圆的半径之积为9,轴与直线都与两圆相切,则实数()A. B. C. D.2.在平面直角坐标系中,圆:,圆:,点,动点,分别在圆和圆上,且,为线段的中点,则的最小值为A.1 B.2 C.3 D.43.函数的图像关于直线对称,则的最小值为()A. B. C. D.14.已知1,a,b,c,5五个数成等比数列,则b的值为()A. B. C. D.35.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B. C. D.6.某种产品的广告费用支出与销售额之间具有线性相关关系,根据下表数据(单位:百万元),由最小二乘法求得回归直线方程为.现发现表中有个数据看不清,请你推断该数据值为()345582834★5672A.65 B.60 C.55 D.507.在,,,是边上的两个动点,且,则的取值范围为()A. B. C. D.8.若()A. B. C. D.9.已知等差数列:1,a1,a2,9;等比数列:-9,b1,b2,b3,-1.则b2(a2-a1)的值为()A.8 B.-8C.±8 D.810.已知点O是边长为2的正三角形ABC的中心,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列中,,以后各项由公式给出,则等于_____.12.如图,在中,,是边上一点,,则.13.已知等比数列的公比为2,前n项和为,则=______.14.若,且,则的最小值是______.15.在公差为的等差数列中,有性质:,根据上述性质,相应地在公比为等比数列中,有性质:____________.16.函数,的值域是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,函数.(1)求的最小正周期;(2)求的单调增区间.18.三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.19.某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如表所示:组号分组频数频率第1组50.05第2组a0.35第3组30b第4组200.20第5组100.10合计n1.00(1)求出频率分布表中的值,并完成下列频率分布直方图;(2)为了能对学生的体能做进一步了解,该校决定在第1,4,5组中用分层抽样取7名学生进行不同项目的体能测试,若在这7名学生中随机抽取2名学生进行引体向上测试,求第4组中至少有一名学生被抽中的概率.20.某高中为了选拔学生参加“全国高中数学联赛”,先在本校进行初赛(满分150分),随机抽取100名学生的成绩作为样本,并根据他们的初赛成绩得到如图所示的频率分布直方图.(1)求频率分布直方图中a的值;(2)根据频率分布直方图,估计这次初赛成绩的平均数、中位数、众数.21.(1)若对任意的,总有成立,求常数的值;(2)在数列中,,求通项;(3)在(2)的条件下,设,从数列中依次取出第项,第项,第项,按原来的顺序组成新数列,其中试问是否存在正整数,使得且成立?若存在,求出的值;若不存在,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据圆的切线性质可知连心线过原点,故设连心线,再代入,根据方程的表达式分析出是方程的两根,再根据韦达定理结合两圆的半径之积为9求解即可.【详解】因为两切线均过原点,有对称性可知连心线所在的直线经过原点,设该直线为,设两圆与轴的切点分别为,则两圆方程为:,因为圆与交于两点,其中一交点的坐标为.所以①,②.又两圆半径之积为9,所以③联立①②可知是方程的两根,化简得,即.代入③可得,由题意可知,故.因为的倾斜角是连心线所在的直线的倾斜角的两倍.故,故.故选:A【点睛】本题主要考查了圆的方程的综合运用,需要根据题意列出对应的方程,结合韦达定理以及直线的斜率关系求解.属于难题.2、A【解析】
由得,根据向量的运算和两点间的距离公式,求得点的轨迹方程,再利用点与圆的位置关系,即可求解的最小值,得到答案.【详解】设,,,由得,即,由题意可知,MN为Rt△AMB斜边上的中线,所以,则又由,则,可得,化简得,∴点的轨迹是以为圆心、半径等于的圆C3,∵M在圆C3内,∴MN的最小值即是半径减去M到圆心的距离,即,故选A.【点睛】本题主要考查了圆的方程及性质的应用,以及点圆的最值问题,其中解答中根据圆的性质,求得点的轨迹方程,再利用点与圆的位置关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.3、C【解析】
的对称轴为,化简得到得到答案.【详解】对称轴为:当时,有最小值为故答案选C【点睛】本题考查了三角函数的对称轴,将对称轴表示出来是解题的关键,意在考查学生对于三角函数性质的灵活运用.4、A【解析】
根据等比数列奇数项也成等比数列,求解.【详解】因为1,a,b,c,5五个数成等比数列,所以也成等比数列,等比数列奇数项的符号一致,,.故选A.【点睛】本题考查了等比数列的基本性质,属于简单题型,但需注意这个隐含条件.5、B【解析】
先由已知条件求出扇形的半径为,再结合弧长公式求解即可.【详解】解:设扇形的半径为,由弧度数为2的圆心角所对的弦长也是2,可得,由弧长公式可得:这个圆心角所对的弧长是,故选:B.【点睛】本题考查了扇形的弧长公式,重点考查了运算能力,属基础题.6、B【解析】
求出样本中心点的坐标,代入线性回归方程求解.【详解】设表中看不清的数据为,则,,代入,得,解得.故选:.【点睛】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.7、A【解析】由题意,可以点为原点,分别以为轴建立平面直角坐标系,如图所示,则点的坐标分别为,直线的方程为,不妨设点的坐标分别为,,不妨设,由,所以,整理得,则,即,所以当时,有最小值,当时,有最大值.故选A.点睛:此题主要考查了向量数量积的坐标运算,以及直线方程和两点间距离的计算等方面的知识与技能,还有坐标法的运用等,属于中高档题,也是常考考点.根据题意,把运动(即的位置在变)中不变的因素()找出来,通过坐标法建立合理的直角坐标系,把点的坐标表示出来,再通过向量的坐标运算,列出式子,讨论其最值,从而问题可得解.8、D【解析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.9、B【解析】a2-a1=d=9-13又b22=b1b因为b2与-9,-1同号,所以b2=-3.所以b2(a2-a1)=-3×8本题选择B选项.10、B【解析】
直接由正三角形的性质求出两向量的模和夹角,由数量积定义计算.【详解】∵点O是边长为2的正三角形ABC的中心,∴,,∴.故选:B.【点睛】本题考查平面向量的数量积,掌握数量积的定义是解题关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
可以利用前项的积与前项的积的关系,分别求得第三项和第五项,即可求解,得到答案.【详解】由题意知,数列中,,且,则当时,;当时,,则,当时,;当时,,则,所以.【点睛】本题主要考查了数列的递推关系式的应用,其中解答中熟练的应用递推关系式是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】
由图及题意得
,
=
∴
=(
)(
)=
+
=
=
.13、【解析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.14、8【解析】
利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.15、【解析】
根据题中条件,类比等差数列的性质,可直接得出结果.【详解】因为在公差为的等差数列中,有性质:,类比等差数列的性质,可得:在公比为等比数列中,故答案为:【点睛】本题主要考查类比推理,只需根据题中条件,结合等差数列与等比数列的特征,即可得出结果,属于常考题型.16、【解析】
利用正切函数在单调递增,求得的值域为.【详解】因为函数在单调递增,所以,,故函数的值域为.【点睛】本题考查利用函数的单调性求值域,注意定义域、值域要写成区间的形式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)直接利用向量的数量积的应用和三角函数关系式的恒等变变换,求出三角函数的关系式,进一步求出函数的最小正周期,即可求得答案.(2)利用(1)的函数关系式和整体思想求出函数的单调区间,即可求得答案.【详解】(1),,函数.(2)由(1)得:令:解得:函数的单调递增区间为:【点睛】本题考查了向量数量积和三角函数求周期,及其求正弦函数单调区间,解题关键是掌握正弦函数周期求法和整体法求正弦函数单调区间的求法,考查了分析能力和计算能力,属于中档题.18、⑴(2)【解析】
⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【详解】⑴由正弦定理得,由已知得,,因为,所以⑵由余弦定理,得即,解得或,负值舍去,所以【点睛】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进行转换,再进行求解,同时注意三角形当中的边角关系,如内角和为180度等19、(1)直方图见解析;(2).【解析】
(1)由题意知,0.050,从而n=100,由此求出第2组的频数和第3组的频率,并完成频率分布直方图.(2)利用分层抽样,35名学生中抽取7名学生,设第1组的1位学生为,第4组的4位同学为,第5组的2位同学为,利用列举法能求出第4组中至少有一名学生被抽中的概率.【详解】(1)由频率分布表可得,所以,;(2)因为第1,4,5组共有35名学生,利用分层抽样,在35名学生中抽取7名学生,每组分别为:第1组;第4组;第5组.设第1组的1位学生为,第4组的4位同学为,第5组的2位同学为.则从7位学生中抽两位学生的基本事件分别为:一共21种.记“第4组中至少有一名学生被抽中”为事件,即包含的基本事件分别为:一共3种,于是所以,.【点睛】本题考查概率的求法,考查频率分布直方图、列举法等基础知识,考查运算求解能力,是基础题.20、(1)(2)平均数、中位数、众数依次为80,81,80【解析】
(1)利用频率分布直方图的性质,列出方程,即可求解;(2)由频率分布直方图,结合平均数、中位数、众数的计算方法,即可求解.【详解】(1)由频率分布直方图的性质,可得,解得.(2)由频率分布直方图,结合平均数、中位数、众数的计算方法,可得平均数为:中位数为x,则,解得.根据众数的概念,可得此频率分布直方图的众数为:80,因此估计这次初赛成绩的平均数、中位数、众数依次为80,81,80.【点睛】本题主要考查了频率分布直方图的性质,平均数、中位数和众数的求解,其中解答中熟记频率分布直方图的相关知识是解答的关键,着重考查了推理与运算能力,属于基础题.21、(1)(2)(3)存在,,或【解析】
由题设得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年临时工派遣合同样本
- 信托公司委托贷款合同
- 缆索吊机租赁合同样本
- 标准家教服务合同范本
- 2024标准附期限借款合同样本
- 2024模板采购合同范本
- 2024工程装修简易合同样本
- 物业租赁合同模板
- 技术服务合同中的保密义务与条款
- 建材产品购销协议样本
- 甲苯磺酸瑞马唑仑临床应用
- 民法典讲座-继承篇
- 外包施工单位入厂安全培训(通用)
- 糖尿病健康知识宣教课件
- 客户接触点管理课件
- Python语言学习通超星课后章节答案期末考试题库2023年
- 医学-心脏骤停急救培训-心脏骤停急救教学课件
- 高中英语-Book 1 Unit 4 Click for a friend教学课件设计
- 年产30万吨碳酸钙粉建设项目可行性研究报告
- 主题班会如何对待厌学情绪(初二) 省赛获奖 省赛获奖
- 初中数学北师大版七年级上册课件5-4 应用一元一次方程-打折销售
评论
0/150
提交评论