版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市彭加木纪念中学2025届高一数学第二学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.空间中可以确定一个平面的条件是()A.三个点 B.四个点 C.三角形 D.四边形2.设,表示两条直线,,表示两个平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则3.与圆关于直线对称的圆的方程为()A. B.C. D.4.已知三角形ABC,如果,则该三角形形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上选项均有可能5.已知则()A. B. C. D.6.设,则使函数的定义域是,且为偶函数的所有的值是()A.0,2 B.0,-2 C. D.27.如果连续抛掷一枚质地均匀的骰子100次,那么第95次出现正面朝上的点数为4的概率为()A. B. C. D.8.已知圆锥的母线长为8,底面圆周长为,则它的体积是()A. B. C. D.9.已知a,b,c,d∈R,则下列不等式中恒成立的是()A.若a>b,c>d,则ac>bd B.若a>b,则C.若a>b>0,则(a﹣b)c>0 D.若a>b,则a﹣c>b﹣c10.直线(,)过点(-1,-1),则的最小值为()A.9 B.1 C.4 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足:,,的前项和记为,若,则实数的取值范围是________12.在平行四边形中,为与的交点,,若,则__________.13.给出下列四个命题:①在中,若,则;②已知点,则函数的图象上存在一点,使得;③函数是周期函数,且周期与有关,与无关;④设方程的解是,方程的解是,则.其中真命题的序号是______.(把你认为是真命题的序号都填上)14.函数的定义域为_________.15.若直线始终平分圆的周长,则的最小值为________16.弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是公差不为0的等差数列,,,成等比数列,且.(1)求数列的通项公式;(2)若,数列的前项和为,证明:.18.已知函数.(1)求函数的最小正周期及单调递增区间:(2)求函数在区间上的最大值及取最大值时的集合.19.已知函数,其中数列是公比为的等比数列,数列是公差为的等差数列.(1)若,,分别写出数列和数列的通项公式;(2)若是奇函数,且,求;(3)若函数的图像关于点对称,且当时,函数取得最小值,求的最小值.20.已知数列满足:,,.(1)求证:数列为等差数列,并求出数列的通项公式;(2)记(),用数学归纳法证明:,21.数列中,,,.(1)证明:数列是等比数列.(2)若,,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据公理2即可得出答案.【详解】在A中,不共线的三个点能确定一个平面,共线的三个点不能确定一个平面,故A错误;在B中,不共线的四个点最多能确定四个平面,故B错误;在C中,由于三角形的三个顶点不共线,因此三角形能确定一个平面,故C正确;在D中,四边形有空间四边形和平面四边形,空间四边形不能确定一个平面,故D错误.【点睛】本题对公理2进行了考查,确定一个平面关键是对过不在一条直线上的三点,有且只有一个平面的理解.2、D【解析】
对选项进行一一判断,选项D为面面垂直判定定理.【详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【点睛】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.3、A【解析】
设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆的方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】
由正弦定理化简已知可得:,由余弦定理可得,可得为钝角,即三角形的形状为钝角三角形.【详解】由正弦定理,,可得,化简得,由余弦定理可得:,又,为钝角,即三角形为钝角三角形.故选:B.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.5、B【解析】
根据条件式,判断出,,且.由不等式性质、基本不等式性质或特殊值即可判断选项.【详解】因为所以可得,,且对于A,由对数函数的图像与性质可知,,所以A错误;对于B,由基本不等式可知,即由于,则,所以B正确;对于C,由条件可得,所以C错误;对于D,当时满足条件,但,所以D错误.综上可知,B为正确选项故选:B【点睛】本题考查了不等式性质的综合应用,根据基本不等式求最值,属于基础题.6、D【解析】
根据幂函数的性质,结合题中条件,即可得出结果.【详解】若函数的定义域是,则;又函数为偶函数,所以只能使偶数;因为,所以能取的值为2.故选D【点睛】本题主要考查幂函数性质的应用,熟记幂函数的性质即可,属于常考题型.7、B【解析】
由随机事件的概念作答.【详解】抛掷一枚质地均匀的骰子,出现正面朝上的点数为4,这个事件是随机事件,每次抛掷出现的概率是相等的,都是,不会随机抛掷次数的变化而变化.故选:B.【点睛】本题考查随机事件的概率,属于基础题.8、D【解析】
圆锥的底面周长,求出底面半径,然后求出圆锥的高,即可求出圆锥的体积.【详解】∵圆锥的底面周长为
∴圆锥的底面半径
双∵圆锥的母线长∴圆锥的高为∴圆锥的体积为故选D.【点睛】本题是基础题,考查计算能力,圆锥的高的求法,熟练掌握公式是解题的关键.9、D【解析】
根据不等式的性质判断.【详解】当时,A不成立;当时,B不成立;当时,C不成立;由不等式的性质知D成立.故选D.【点睛】本题考查不等式的性质,不等式的性质中,不等式两边乘以同一个正数,不等式号方向不变,两边乘以同一个负数,不等式号方向改变,这个性质容易出现错误:一是不区分所乘数的正负,二是不区分是否为1.10、A【解析】
将点的坐标代入直线方程:,再利用乘1法求最值【详解】将点的坐标代入直线方程:,,当且仅当时取等号【点睛】已知和为定值,求倒数和的最小值,利用乘1法求最值。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
因为数列有极限,故考虑的情况.又数列分两组,故分组求和求极限即可.【详解】因为,故,且,故,又,即.综上有.故答案为:【点睛】本题主要考查了数列求和的极限,需要根据题意分组求得等比数列的极限,再利用不等式找出参数的关系,属于中等题型.12、【解析】
根据向量加法的三角形法则逐步将待求的向量表示为已知向量.【详解】由向量的加法法则得:所以,所以故填:【点睛】本题考查向量的线性运算,属于基础题.13、①③【解析】
①利用三角形的内角和定理以及正弦函数的单调性进行判断;②根据余弦函数的有界性可进行判断;③利用周期函数的定义,结合余弦函数的周期性进行判断;④根据互为反函数图象的对称性进行判断.【详解】①在中,若,则,则,由于正弦函数在区间上为增函数,所以,故命题①正确;②已知点,则函数,所以该函数图象上不存在一点,使得,故命题②错误;③函数的是周期函数,当时,,该函数的周期为.当时,,该函数的周期为.所以,函数的周期与有关,与无关,命题③正确;④设方程的解是,方程的解是,由,可得,由,可得,则可视为函数与直线交点的横坐标,可视为函数与直线交点的横坐标,如下图所示:联立,得,可得点,由于函数的图象与函数的图象关于直线对称,则直线与函数和函数图象的两个交点关于点对称,所以,命题④错误.故答案为:①③.【点睛】本题考查三角函数的周期、正弦函数单调性的应用、互为反函数图象的对称性的应用以及余弦函数有界性的应用,考查分析问题和解决问题的能力,属于中等题.14、【解析】
根据对数函数的真数大于0,列出不等式求解集即可.【详解】对数函数f(x)=log2(x﹣1)中,x﹣1>0,解得x>1;∴f(x)的定义域为(1,+∞).故答案为:(1,+∞).【点睛】本题考查了求对数函数的定义域问题,是基础题.15、9【解析】
平分圆的直线过圆心,由此求得的等量关系式,进而利用基本不等式求得最小值.【详解】由于直线始终平分圆的周长,故直线过圆的圆心,即,所以.【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值,属于基础题.16、1【解析】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】
(1)由题意列式求得数列的首项和公差,然后代入等差数列的通项公式得答案.
(2)求出数列的通项,利用裂项相消法求出数列的前项和得答案.【详解】(1)差数列中,,成等比数列有:即,得所以又,即,.所以.(2)所以.所以所以【点睛】本题考查了等差数列的通项公式,等比数列的性质,裂项相消法求数列的前项和,是中档题.18、(1),单调递增区间为;(2)最大值为,取最大值时,的集合为.【解析】
(1)对进行化简转换为正弦函数,可得其最小正周期和递增区间;(2)根据(1)的结果,可得正弦函数的最大值和此时的的集合.【详解】解:(1)∴.增区间为:即单调递增区间为(2)当时,的最大值为,此时,∴取最大值时,的集合为.【点睛】本题考查二倍角公式和辅助角公式以及正弦函数的性质,属于基础题.19、(1),;(2);(3)1【解析】
(1)根据等差数列、等比数列的通项公式即可求解;(2)根据奇函数的定义得出,化简得,解方程可得(3)将化成的形式,依题意有,从而得到,因为当时,函数取得最小值,所以,两式相减即可求解.【详解】(1)由等差数列、等比数列的通项公式可得,;(2)因为,所以即,所以又由,得(3)记,则,其中;因为的图像关于点对称,所以①因为当时,函数取得最小值,所以②②-①得,因为,当,时,取得最小值为0【点睛】本题主要考查了等差数列、等比数列的通项公式的求法、三角函数的化简以及正弦型函数图像的性质,考查较全面,属于难题.20、(1)证明见解析,;(2)见解析【解析】
(1)定义法证明:;(2)采用数学归纳法直接证明(注意步骤).【详解】由可知:,则有,即,所以为等差数列,且首相为,公差,所以,故;(2),当时,成立;假设当时,不等式成立则:;当时,,因为,所以,则,故时不等式成立,综上可知:.【点睛】数学归纳法的一般步骤:(1)命题成立;(2)假设命题成立;(3)证明命题成立(一定要借助假设,否则不能称之为数学归纳法).21、(1)见解析(2)9或35或133【解析】
(1)分别写出和,做商,再用表示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024户外广告牌制作安装合同
- 2024年合作投资协议书模板
- 2024苗木购销合同范本简单版
- 2024股东合作经营合同协议书
- 城市街道广告位租赁合同
- 插画约稿合同样本
- 二房东租房合同租房合同协议范本
- 2024股份制工程合作协议书
- 货物运输合同签订技巧
- 4.1 夯实法治基础(导学案) 2024-2025学年统编版道德与法治九年级上册
- 2023年贵州黔东南州州直机关遴选公务员考试真题
- 货物质量保证措施方案
- 黑龙江省龙东地区2024-2025学年高二上学期阶段测试(二)(期中) 英语 含答案
- 4S店展厅改造装修合同
- (培训体系)2020年普通话测试培训材料
- 3-4单元测试-2024-2025学年统编版语文六年级上册
- 北师版数学八年级上册 5.8三元一次方程组课件
- 2024混合动力汽车赛道专题报告-2024-10-市场解读
- DB34T 4338-2022 行政规范性文件合法性审核规范
- 企业单位消防安全规范化管理指导手册
- 废旧物资回收投标方案(技术方案)
评论
0/150
提交评论