八年级数学下册专题07 平行四边形综合压轴特训(原卷版)_第1页
八年级数学下册专题07 平行四边形综合压轴特训(原卷版)_第2页
八年级数学下册专题07 平行四边形综合压轴特训(原卷版)_第3页
八年级数学下册专题07 平行四边形综合压轴特训(原卷版)_第4页
八年级数学下册专题07 平行四边形综合压轴特训(原卷版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题07平行四边形综合压轴特训一.选择题(共16小题)1.已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=+.其中正确结论的序号是()A.①③④ B.①②③ C.②③④ D.①②④2.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点O2,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A. B. C. D.3.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN=45°下列三个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC=90°;③△MNC的周长不变.其中正确结论的个数是()A.0 B.1 C.2 D.34.如图,在正方形ABCD中,AB=4,AC与BD相交于点O,N是AO的中点,点M在BC边上,且BM=3,P为对角线BD上一点,当对角线BD平分∠NPM时,PM﹣PN值为()A.1 B. C.2 D.5.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4) B.(,3)、(﹣,4) C.(,)、(﹣,4) D.(,)、(﹣,4)6.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF中正确的有()A.4个 B.3个 C.2个 D.1个7.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A. B. C.3 D.48.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.199.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的周长为1,则第n个矩形的周长为()A. B. C. D.10.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A.4 B.5 C.6 D.711.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AC=BD C.AC⊥BD D.AB=DC12.用边长为1的正方形纸板,制成一副七巧板(如图①),将它拼成“小天鹅”图案(如图②),其中阴影部分的面积为()A. B. C. D.13.已知:四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是()A.1<MN<5 B.1<MN≤5 C.<MN< D.<MN≤14.如图,把菱形ABCD沿对角线AC的方向移动到菱形A′B′C′D′的位置,它们的重叠部分(图中阴影部分)的面积是菱形ABCD面积的,若AC=,则菱形移动的距离AA′是()A.1 B. C. D.15.如图,正方形ABCO和正方形DEFO的顶点A,O,E在同一直线l上,且EF=,AB=3,给出下列结论:①∠COD=45°;②AE=6;③CF=BD=;④△COF的面积是.其中正确的结论为()A.①③ B.①④ C.②③ D.①③④16.定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.如图,在平面直角坐标系xOy中,矩形OABC的边OA=3,OC=4,点M(2,0),在边AB存在点P,使得△CMP为“智慧三角形”,则点P的坐标为()A.(3,1)或(3,3) B.(3,)或(3,3) C.(3,)或(3,1) D.(3,)或(3,1)或(3,3)二.填空题(共11小题)17.如图,正方形ABCD的边长为4,O为对角线BD的中点,点M在边AB上,且BM=2AM,点N在边BC上,且BN=AM,连接AN,MD交于点P,连接OP,则OP的长为.18.如图,在正方形ABCD中,E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE,EF为邻边作矩形DEFG,连接CG.在下列结论中:①DE=EF;②△DAE≌△DCG;③AC⊥CG;④CE=CF.其中正确的结论序号是.19.在正方形ABCD中,点G在AB上,点H在BC上,且∠GDH=45°,DG、DH分别与对角线AC交于点E、F,则线段AE、EF、FC之间的数量关系为.20.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.21.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为.22.如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…Sn(n为正整数),那么第8个正方形面积S8=.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…An分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.24.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.25.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.26.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=.27.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.三.解答题(共13小题)28.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.29.已知:如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)求证:四边形BECF是菱形;(2)当∠A的大小为多少度时,四边形BECF是正方形?30.(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图1写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)](2)如图2,在▱ABCD中,对角线交点为O,A1、B1、C1、D1分别是OA、OB、OC、OD的中点,A2、B2、C2、D2分别是OA1、OB1、OC1、OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形3反映的规律,猜猜l可能是多少?31.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACD的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.32.如图,已知菱形ABCD的边长为2,∠DAB=60°,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.连接BD.(1)图中有几对三角形全等?试选取一对全等的三角形给予证明;(2)判断△BEF的形状,并说明理由.(3)当△BEF的面积取得最小值时,试判断此时EF与BD的位置关系.33.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.34.已知:如图,点M是矩形ABCD的边AD的中点,点P是BC边上的一动点,PE⊥CM,PF⊥BM,垂足分别为E、F.(Ⅰ)当四边形PEMF为矩形时,矩形ABCD的长与宽满足什么条件?试说明理由.(Ⅱ)在(Ⅰ)中当点P运动到什么位置时,矩形PEMF变为正方形?为什么?35.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.36.设E、F分别在正方形ABCD的边BC,CD上滑动保持且∠EAF=45°,AP⊥EF于点P.(1)求证:AP=AB;(2)若AB=5,求△ECF的周长.37.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=20cm,BC=24cm,P、Q分别从A、C同时出发,向D,B运动.当一个点到达端点时,停止运动,另一个点也停止运动.(1)如果P、Q的速度分别为1cm/s和3cm/s.运动时间为t秒,则t为何值时,PQ=DC.并说明理由.(2)如果P的速度为1cm/s,其他条件不变,要使四边形APQB是矩形,且矩形的长宽之比为2:1,求Q点运动的速度.38.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,连接DE交AC于F.(1)求证:四边形ADCE为矩形.(2)线段DF与AB有怎样的位置关系和数量关系,并说明理由.(3)当△ABC满足什么条件时,四边形ADCE是一个正方形?简述你的理由.39.如图,长方形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(6,0),(0,10),点B在第一象限内.(1)写出点B的坐标,并求长方形OABC的周长;(2)若有过点C的直线CD把长方形OABC的周长分成3:5两部分,D为直线CD与长方形的边的交点,求点D的坐标.40.如图1,在正方形AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论