2025届新疆阿勒泰第二高级中学高一数学第二学期期末教学质量检测试题含解析_第1页
2025届新疆阿勒泰第二高级中学高一数学第二学期期末教学质量检测试题含解析_第2页
2025届新疆阿勒泰第二高级中学高一数学第二学期期末教学质量检测试题含解析_第3页
2025届新疆阿勒泰第二高级中学高一数学第二学期期末教学质量检测试题含解析_第4页
2025届新疆阿勒泰第二高级中学高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆阿勒泰第二高级中学高一数学第二学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知一扇形的周长为,圆心角为,则该扇形的面积为()A. B. C. D.2.数列1,,,,…的一个通项公式为()A. B. C. D.3.某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件 B.B和C为互斥事件C.C与D是对立事件 D.B与D为互斥事件4.已知点G为的重心,若,,则=()A. B. C. D.5.若将函数的图象向左平移个最小周期后,所得图象对应的函数为()A. B.C. D.6.一组数据0,1,2,3,4的方差是A. B. C.2 D.47.关于的不等式的解集中,恰有3个整数,则的取值范围是()A. B.C. D.8.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π49.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在的汽车辆数为()A.8 B.80 C.65 D.7010.已知数列中,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若,则______;若,则______.12.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边过点,则_______;_______.13.设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为__.14.数列满足,则________.15.等比数列的首项为,公比为,记,则数列的最大项是第___________项.16.若数列满足,且对于任意的,都有,则___;数列前10项的和____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知α,β为锐角,tanα=(1)求sin2α(2)求tanβ18.三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.19.为了了解当下高二男生的身高状况,某地区对高二年级男生的身高(单位:)进行了抽样调查,得到的频率分布直方图如图所示.已知身高在之间的男生人数比身高在之间的人数少1人.(1)若身高在以内的定义为身高正常,而该地区共有高二男生18000人,则该地区高二男生中身高正常的大约有多少人?(2)从所抽取的样本中身高在和的男生中随机再选出2人调查其平时体育锻炼习惯对身高的影响,则所选出的2人中至少有一人身高大于185的概率是多少?20.已知函数.(1)当时,解不等式;(2)若不等式对恒成立,求m的取值范围.21.某校从高一(1)班和(2)班的某次数学考试的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示(试卷满分为100分)(1)试计算这12份成绩的中位数;(2)用各班的样本方差比较两个班的数学学习水平,哪个班更稳定一些?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据题意设出扇形的弧长与半径,通过扇形的周长与弧长公式即可求出扇形的弧长与半径,进而根据扇形的面积公式即可求解.【详解】设扇形的弧长为,半径为,扇形的圆心角的弧度数是.

则由题意可得:.

可得:,解得:,.可得:故选:C【点睛】本题主要考查扇形的周长与扇形的面积公式的应用,以及考查学生的计算能力,属于基础题.2、A【解析】

把数列化为,根据各项特点写出它的一个通项公式.【详解】数列…可以化为,所以该数列的一个通项公式为.故选:A【点睛】本题考查了根据数列各项特点写出它的一个通项公式的应用问题,是基础题目.3、D【解析】

根据互斥事件和对立事件的概念,进行判定,即可求解,得到答案.【详解】由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B为不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环”可能发生,所以事件C和D为不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D为互斥事件,故选D.【点睛】本题主要考查了互斥事件和对立事件的概念及判定,其中解答中熟记互斥事件和对立事件的概念,准确判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4、B【解析】

由重心分中线为,可得,又(其中是中点),再由向量的加减法运算可得.【详解】设是中点,则,又为的重心,∴.故选B.【点睛】本题考查向量的线性运算,解题关键是掌握三角形重心的性质,即重心分中线为两段.5、B【解析】

首先判断函数的周期,再利用“左加右减自变量,上加下减常数项”解题.【详解】函数的最小正周期为,函数的图象向左平移个最小正周期即平移个单位后,所得图象对应的函数为,即.故选:B.【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,根据“左加右减”进行平移变换即可,对横坐标进行平移变换注意系数ω即可,属于基础题.6、C【解析】

先求得平均数,再根据方差公式计算。【详解】数据的平均数为:方差是=2,选C。【点睛】方差公式,代入计算即可。7、C【解析】

首先将原不等式转化为,然后对进行分类讨论,再结合不等式解集中恰有3个整数,列出关于的条件,求解即可.【详解】关于的不等式等价于当时,即时,于的不等式的解集为,要使解集中恰有3个整数,则;当时,即时,于的不等式的解集为,不满足题意;当时,即时,于的不等式的解集为,要使解集中恰有3个整数,则;综上,.故选:C.【点睛】本题主要考了一元二次不等式的解法以及分类讨论思想,属于中档题.8、D【解析】

由BC=2AC,根据正弦定理可得:sinA=2sinB,由角【详解】由于在ΔABC中,有BC=2AC,根据正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函数的图像可得:A∈[故答案选D【点睛】本题考查正弦定理在三角形中的应用,以及三角函数图像的应用,属于中档题.9、B【解析】

先计算时速在的汽车频率,再乘200,。【详解】由图知:时速在的汽车频率为所以时速在的汽车辆数为,选B.【点睛】本题考查频率分布直方图,属于基础题。10、B【解析】

由数列的递推关系,可得数列的周期性,再求解即可.【详解】解:因为,①则,②①+②有:,即,则,即数列的周期为6,又,得,,则,故选:D.【点睛】本题考查了数列的递推关系,重点考查了数列周期性的应用,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】

由向量平行与垂直的性质,列出式子计算即可.【详解】若,可得,解得;若,则,解得.故答案为:6;.【点睛】本题考查平面向量平行、垂直的性质,考查平面向量的坐标运算,考查学生的计算能力,属于基础题.12、【解析】

根据三角函数的定义直接求得的值,即可得答案.【详解】∵角终边过点,,∴,,,∴.故答案为:;.【点睛】本题考查三角函数的定义,考查运算求解能力,属于基础题.13、【解析】试题分析:∵数列满足,且,∴当时,.当时,上式也成立,∴.∴.∴数列的前项的和.∴数列的前项的和为.故答案为.考点:(1)数列递推式;(2)数列求和.14、【解析】

根据题意可求得和的等式相加,求得,进而推出,判断出数列是以6为周期的数列,进而根据求出答案。【详解】将以上两式相加得数列是以6为周期的数列,故【点睛】对于递推式的使用,我们可以尝试让取或,又得一个递推式,将两个递推式相加或者相减来找规律,本题是一道中等难度题目。15、【解析】

求得,则可将问题转化为求使得最大且使得为偶数的正整数的值,利用二次函数的基本性质求解即可.【详解】由等比数列的通项公式可得,,则问题转化为求使得最大且使得为偶数的正整数的值,,当时,取得最大值,此时为偶数.因此,的最大项是第项.故答案为:.【点睛】本题考查等比数列前项积最值的计算,将问题进行转化是解题的关键,考查分析问题和解决问题的能力,属于中等题.16、,【解析】试题分析:由得由得,所以数列为等比数列,因此考点:等比数列通项与和项三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2425(2)【解析】

(1)结合α为锐角利用同角三角函数的关系,结合倍角公式即可求值;(2)结合α,β为锐角,求出tan(α+β),利用两角和的正切公式即可求出tan【详解】(1)因为α为锐角,tanα=43所以sin(2)因为α,β为锐角,cos(α+β)=-所以sin(α+β)=2因为tan(α+β)=tanα+tan【点睛】本题考查同角三角函数之间的关系以及倍角公式,同时考查了两角和的正切公式,属于中档题.18、⑴(2)【解析】

⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【详解】⑴由正弦定理得,由已知得,,因为,所以⑵由余弦定理,得即,解得或,负值舍去,所以【点睛】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进行转换,再进行求解,同时注意三角形当中的边角关系,如内角和为180度等19、(1)12600;(2).【解析】

(1)由频率分布直方图知,身高正常的频率,于是可得答案;(2)先计算出样本容量,再找出样本中身高在中的人数,从而利用古典概型公式得到答案.【详解】(1)由频率分布直方图知,身高正常的频率为0.7,所以估计总体,即该地区所有高二年级男生中身高正常的频率为0.7,所以该地区高二男生中身高正常的大约有人.(2)由所抽取样本中身高在的频率为,可知身高在的频率为,所以样本容量为,则样本中身高在中的有3人,记为,身高在中的有2人,记为,从这5人中再选2人,共有,,,,,,,,,10种不同的选法,而且每种选法都是互斥且等可能的,所以,所选2人中至少有一人身高大于185的概率.【点睛】本题主要考查频率分布直方图,古典概型的相关计算,意在考查学生的转化能力,计算能力和分析能力,难度中等.20、(1)见解析;(2)【解析】

(1)当m>﹣2时,f(x)≥m;即(m+1)x2﹣mx+m﹣1≥m,因式分解,对m进行讨论,可得解集;(2)转化为x∈[﹣1,1]恒成立,分离参数,利用基本不等式求最值求解m的取值范围.【详解】(1)当时,;即.可得:.∵①当时,即.不等式的解集为②当时,.∵,∴不等式的解集为③当时,.∵,∴不等式的解集为综上:,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.(2)由题对任意,不等式恒成立.即.∵时,恒成立.可得:.设,.则.可得:∵,当且仅当是取等号.∴,当且仅当是取等号.故得m的取值范围.【点睛】本题主要考查了一元二次不等式的解法和讨论思想的应用,同时考查了分析求解的能力和计算能力,恒成立问题的转化,属于中档题.21、(1)80;(2)(1)班.【解析】

(1)从茎叶图可直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论