




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省云浮市2025届高一数学第二学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中角ABC的对边分别为A.B.c,cosC=,且acosB+bcosA=2,则△ABC面积的最大值为()A. B. C. D.2.已知各项为正数的等比数列中,,,则公比q=A.4 B.3 C.2 D.3.设,函数在区间上是增函数,则()A. B.C. D.4.设是空间四个不同的点,在下列命题中,不正确的是A.若与共面,则与共面B.若与是异面直线,则与是异面直线C.若==,则D.若==,则=5.函数图象的一个对称中心和一条对称轴可以是()A., B.,C., D.,6.已知函数在区间上是增函数,且在区间上恰好取得一次最大值为2,则的取值范围是()A. B. C. D.7.数列,…的一个通项公式是()A.B.C.D.8.已知函数在上单调递增,且的图象关于对称.若,则的解集为()A. B.C. D.9.某市新上了一批便民公共自行车,有绿色和橙黄色两种颜色,且绿色公共自行车和橙黄色公共自行车的数量比为2∶1,现在按照分层抽样的方法抽取36辆这样的公共自行车放在某校门口,则其中绿色公共自行车的辆数是()A.8 B.12 C.16 D.2410.等差数列中,若,则=()A.11 B.7 C.3 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,该函数零点的个数为_____________12.下边程序执行后输出的结果是().13.若等比数列满足,且公比,则_____.14.设,其中,则的值为________.15.已知为直线上一点,过作圆的切线,则切线长最短时的切线方程为__________.16.已知平面向量,,满足:,且,则的最小值为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.18.求倾斜角为且分别满足下列条件的直线方程:(1)经过点;(2)在轴上的截距是-5.19.直线的方程为.(1)若在两坐标轴上的截距相等,求的值;(2)若不经过第二象限,求实数的取值范围.20.已知关于直线对称,且圆心在轴上.(1)求的标准方程;(2)已知动点在直线上,过点引的两条切线、,切点分别为.①记四边形的面积为,求的最小值;②证明直线恒过定点.21.据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径、圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.(1)试计算出图案中球与圆柱的体积比;(2)假设球半径.试计算出图案中圆锥的体积和表面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
首先利用同角三角函数的关系式求出sinC的值,进一步利用余弦定理和三角形的面积公式及基本不等式的应用求出结果.【详解】△ABC中角ABC的对边分别为a、b、c,cosC,利用同角三角函数的关系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.则,△ABC面积的最大值为,故选D.【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积的应用,基本不等式的应用,主要考查学生的运算能力和转换能力,属于中档题.2、C【解析】
由,利用等比数列的性质,结合各项为正数求出,从而可得结果.【详解】,,,,故选C.【点睛】本题主要考查等比数列的性质,以及等比数列基本量运算,意在考查灵活运用所学知识解决问题的能力,属于简单题.3、C【解析】
首先比较自变量与的大小,然后利用单调性比较函数值与的大小.【详解】因为,函数在区间上是增函数,所以.故选C.【点睛】已知函数单调性比较函数值大小,可以借助自变量的大小来比较函数值的大小.4、D【解析】
由空间四点共面的判断可是A,B正确,;C,D画出图形,可以判定AD与BC不一定相等,证明BC与AD一定垂直.【详解】对于选项A,若与共面,则与共面,正确;对于选项B,若与是异面直线,则四点不共面,则与是异面直线,正确;如图,空间四边形ABCD中,AB=AC,DB=DC,则AD与BC不一定相等,∴D错误;对于C,当四点共面时显然成立,当四点不共面时,取BC的中点M,连接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正确;【点睛】本题通过命题真假的判定,考查了空间中的直线共面与异面以及垂直问题,是综合题.5、B【解析】
直接利用余弦型函数的性质求出函数的对称轴和对称中心,即可得到答案.【详解】由题意,函数的性质,令,解得,当时,,即函数的一条对称轴的方程为,令,解得,当时,,即函数的一个对称中心为,故选B.【点睛】本题主要考查了余弦型函数的性质对称轴和对称中心的应用,着重考查学生的运算能力和转换能力,属于基础题型.6、D【解析】
化简函数为正弦型函数,根据题意,利用正弦函数的图象与性质求得的取值范围.【详解】解:函数则函数在上是含原点的递增区间;又因为函数在区间上是单调递增,则,得不等式组又因为,所以解得.又因为函数在区间上恰好取得一次最大值为2,可得,所以,综上所述,可得.故选:D.【点睛】本题主要考查了正弦函数的图像和性质应用问题,也考查了三角函数的灵活应用,属于中档题.7、D【解析】试题分析:由题意得,可采用验证法,分别令,即可作出选择,只有满足题意,故选D.考点:归纳数列的通项公式.8、D【解析】
首先根据题意得到的图象关于轴对称,,再根据函数的单调性画出草图,解不等式即可.【详解】因为的图象关于对称,所以的图象关于轴对称,.又因为在上单调递增,所以函数的草图如下:所以或,解得:或.故选:D【点睛】本题主要考查函数的对称性,同时考查了函数的图象平移变换,属于中档题.9、D【解析】设放在该校门口的绿色公共自行车的辆数是x,则,解得x=1.故选D10、A【解析】
根据和已知条件即可得到.【详解】等差数列中,故选A.【点睛】本题考查了等差数列的基本性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
令,可得或;当时,可解得为函数一个零点;当时,可知,根据的范围可求得零点;综合两种情况可得零点总个数.【详解】令,可得:或当时,或(舍)为函数的一个零点当时,,,为函数的零点综上所述,该函数的零点个数为:个本题正确结果:【点睛】本题考查函数零点个数的求解,关键是能够将问题转化为方程根的个数的求解,涉及到余弦函数零点的求解.12、15【解析】试题分析:程序执行中的数据变化如下:,输出考点:程序语句13、.【解析】
利用等比数列的通项公式及其性质即可得出.【详解】,故答案为:1.【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.14、【解析】
由两角差的正弦公式以及诱导公式,即可求出的值.【详解】,所以,因为,故.【点睛】本题主要考查两角差的正弦公式的逆用以及诱导公式的应用.15、或【解析】
利用切线长最短时,取最小值找点:即过圆心作直线的垂线,求出垂足点.就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程.【详解】设切线长为,则,所以当切线长取最小值时,取最小值,过圆心作直线的垂线,则点为垂足点,此时,直线的方程为,联立,得,点的坐标为.①若切线的斜率不存在,此时切线的方程为,圆心到该直线的距离为,合乎题意;②若切线的斜率存在,设切线的方程为,即.由题意可得,化简得,解得,此时,所求切线的方程为,即.综上所述,所求切线方程为或,故答案为或.【点睛】本题考查过点的圆的切线方程的求解,考查圆的切线长相关问题,在过点引圆的切线问题时,要对直线的斜率是否存在进行分类讨论,另外就是将直线与圆相切转化为圆心到直线的距离等于半径长,考查分析问题与解决问题的能力,属于中等题.16、-1【解析】
,,,由经过向量运算得,知点在以为圆心,1为半径的圆上,这样,只要最小,就可化简.【详解】如图,,则,设是中点,则,∵,∴,即,,记,则点在以为圆心,1为半径的圆上,记,,注意到,因此当与反向时,最小,∴.∴最小值为-1.故答案为-1.【点睛】本题考查平面向量的数量积,解题关键是由已知得出点轨迹(让表示的有向线段的起点都是原点)是圆,然后分析出只有最小时,才可能最小.从而得到解题方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:由,及,得.由,及余弦定理,得.(Ⅱ)解:由(Ⅰ),可得,代入,得.由(Ⅰ)知,A为钝角,所以.于是,,故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.18、(1)(2)【解析】
(1)利用倾斜角与斜率的关系与点斜式求解即可.(2)利用点斜式求解即可.【详解】解:(1)∵所求直线的倾斜角为,斜率,又∵经过,故方程为∴即方程为.(2)∵所求直线在轴上的截距是-5,又有斜率,故方程为∴所求方程为【点睛】本题主要考查了直线斜率与倾斜角的关系以及直线方程的点斜式运用.属于基础题.19、(1)0或2;(2).【解析】
(1)当过坐标原点时,可求得满足题意;当不过坐标原点时,可根据直线截距式,利用截距相等构造方程求得结果;(2)当时,可得直线不经过第二象限;当时,结合函数图象可知斜率为正,且在轴截距小于等于零,从而构造不等式组求得结果.【详解】(1)当过坐标原点时,,解得:,满足题意当不过坐标原点时,即时若,即时,,不符合题意若,即时,方程可整理为:,解得:综上所述:或(2)当,即时,,不经过第二象限,满足题意当,即时,方程可整理为:,解得:综上所述:的取值范围为:【点睛】本题考查直线方程的应用,涉及到直线截距式方程、由图象确定参数范围等知识;易错点是在截距相等时,忽略经过坐标原点的情况,造成丢根.20、(1)(2)①②证明见解析【解析】
(1)根据圆的一般式,可得圆心坐标,将圆心坐标代入直线方程,结合圆心在轴上,即可求得圆C的标准方程.(2)①根据切线性质及切线长定理,表示出的长,根据圆的性质可知当最小时,即可求得面积的最小值;②设出M点坐标,根据两条切线可知M、A、C、B四点共圆,可得圆心坐标及半径,进而求得的方程,根据两个圆公共弦所在直线方程求法即可得直线方程,进而求得过的定点坐标.【详解】(1)由题意知,圆心在直线上,即,又因为圆心在轴上,所以,由以上两式得:,,所以.故的标准方程为.(2)①如图,的圆心为,半径,因为、是的两条切线,所以,,故又因为,根据平面几何知识,要使最小,只要最小即可.易知,当点坐标为时,.此时.②设点的坐标为,因为,所以、、、四点共圆.其圆心为线段的中点,,设所在的圆为,所以的方程为:,化简得:,因为是和的公共弦,所以,两式相减得,故方程为:,当时,,所以直线恒过定点.【点睛】本题考查了圆的一般方程与标准方程的应用,圆中三角形面积问题的应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计平时合同样本
- 公司度任务合同样本
- 个人房屋物业合同标准文本
- 中海物料制作合同样本
- 保安派驻合同标准文本
- 学校游泳课程防溺水安全工作计划
- 公路标志设计施工合同样本
- 部编人教版数学课程实施计划
- 小学美术室创新活动计划
- 东莞日产购车合同样本
- T-CACM 1242-2019 中医外科临床诊疗指南 股肿病
- 2024年北京市公安局文职辅警招聘笔试参考题库附带答案详解
- 2023年湛江市麻章区教育局招聘事业编制教师考试真题
- 电工刀安全操作规程培训
- (完整版)语文写作方格纸模板
- 养老院安全知识培训
- 简单夫妻自愿离婚协议书范本
- 打击违法犯罪工作总结
- 1000以内退位减法500道
- 制氧机实施方案
- 医疗器械临床试验质量管理规范培训
评论
0/150
提交评论