黑龙江省绥化市望奎县第二中学2025届高一数学第二学期期末质量检测试题含解析_第1页
黑龙江省绥化市望奎县第二中学2025届高一数学第二学期期末质量检测试题含解析_第2页
黑龙江省绥化市望奎县第二中学2025届高一数学第二学期期末质量检测试题含解析_第3页
黑龙江省绥化市望奎县第二中学2025届高一数学第二学期期末质量检测试题含解析_第4页
黑龙江省绥化市望奎县第二中学2025届高一数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省绥化市望奎县第二中学2025届高一数学第二学期期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点满足条件则的最小值为()A.9 B.-6 C.-9 D.62.已知等差数列{}的前n项和为,且S8=92,a5=13,则a4=A.16 B.13 C.12 D.103.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为A.5 B.10 C.4 D.204.已知点,直线过点,且与线段相交,则直线的斜率满足()A.或 B.或 C. D.5.在正六边形ABCDEF中,点P为CE上的任意一点,若,则()A.2 B. C.3 D.不确定6.已知则的最小值是()A. B.4 C. D.57.方程表示的曲线是()A.一个圆 B.两个圆 C.半个圆 D.两个半圆8.在等差数列中,如果,则数列前9项的和为()A.297 B.144 C.99 D.669.若两等差数列,前项和分別为,,满足,则的值为().A. B. C. D.10.如图,两个正方形和所在平面互相垂直,设、分别是和的中点,那么:①;②平面;③;④、异面.其中不正确的序号是()A.① B.② C.③ D.④二、填空题:本大题共6小题,每小题5分,共30分。11.一个几何体的三视图如图所示(单位:m),则该几何体的体积为.12.若,则______.13.已知,,若,则______14.一组数据2,4,5,,7,9的众数是7,则这组数据的中位数是__________.15.已知三点、、共线,则a=_______.16.某校选修“营养与卫生”课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高二年级的学生中抽取了8名,则在该校高一年级的学生中应抽取的人数为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.18.某生产企业研发了一种新产品,该产品在试销一个阶段后得到销售单价(单位:元)和销售量(单位:万件)之间的一组数据,如下表所示:销售单价/元销售量/万件(1)根据表中数据,建立关于的线性回归方程;(2)从反馈的信息来看,消费者对该产品的心理价(单位:元/件)在内,已知该产品的成本是元,那么在消费者对该产品的心理价的范围内,销售单价定为多少时,企业才能获得最大利润?(注:利润=销售收入-成本)参考数据:参考公式:19.设数列的前项和为,已知.(1)求,的值;(2)求证:数列是等比数列.20.已知圆过点,且与圆关于直线:对称.(1)求圆的标准方程;(2)设为圆上的一个动点,求的最小值.21.定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为三角形”数列对于“三角形”数列,如果函数使得仍为一个三角形”数列,则称是数列的“保三角形函数”.(1)已知是首项为2,公差为1的等差数列,若,是数列的保三角形函数”,求的取值范围;(2)已知数列的首项为2019,是数列的前项和,且满足,证明是“三角形”数列;(3)求证:函数,是数列1,,的“保三角形函数”的充要条件是,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:满足约束条件的点的可行域,如图所示由图可知,目标函数在点处取得最小值,故选B.考点:线性规划问题.2、D【解析】

利用等差数列前项和公式化简已知条件,并用等差数列的性质转化为的形式,由此求得的值.【详解】依题意,,解得,故选D.【点睛】本小题主要考查等差数列前项和公式,以及等差数列的性质,解答题目过程中要注意观察已知条件的下标.属于基础题.3、B【解析】

直接利用分层抽样按照比例抽取得到答案.【详解】设应抽取的女生人数为,则,解得.故答案选B【点睛】本题考查了分层抽样,属于简单题.4、A【解析】

画出三点的图像,根据的斜率,求得直线斜率的取值范围.【详解】如图所示,过点作直线轴交线段于点,作由直线①直线与线段的交点在线段(除去点)上时,直线的倾斜角为钝角,斜率的范围是.②直线与线段的交点在线段(除去点)上时,直线的倾斜角为锐角,斜率的范围是.因为,,所以直线的斜率满足或.故选:A.【点睛】本小题主要考查两点求斜率的公式,考查数形结合的数学思想方法,考查分类讨论的数学思想方法,属于基础题.5、C【解析】

延长交于点,延长交于点,可推出,,所以有,然后利用平面向量共线的推论即可求出【详解】如图,延长交于点,延长交于点设正六边形ABCDEF的边长为则在中有,,所以,所以有,同理可得因为所以因为三点共线,所以有,即故选:C【点睛】遇到三点共线时,要联想到平面向量共线的推论:三点共线,若,则.6、C【解析】

由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.7、D【解析】原方程即即或故原方程表示两个半圆.8、C【解析】试题分析:,,∴a4=13,a6=9,S9==99考点:等差数列性质及前n项和点评:本题考查了等差数列性质及前n项和,掌握相关公式及性质是解题的关键.9、B【解析】解:因为两等差数列、前项和分别为、,满足,故,选B10、D【解析】

取的中点,连接,,连接,,由线面垂直的判定和性质可判断①;由三角形的中位线定理,以及线面平行的判定定理可判断②③④.【详解】解:取的中点,连接,,连接,,正方形和所在平面互相垂直,、分别是和的中点,可得,,平面,可得,故①正确;由为的中位线,可得,且平面,可得平面,故②③正确,④错误.故选:D.【点睛】本题主要考查空间线线和线面的位置关系,考查转化思想和数形结合思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为.考点:本题主要考查三视图及几何体体积的计算.12、【解析】

,则,故答案为.13、【解析】

根据向量垂直的坐标表示列出等式,求出,再利用二倍角公式、平方关系即可求出.【详解】由得,,解得,.【点睛】本题主要考查了向量垂直的坐标表示以及二倍角公式、平方关系的应用.14、6【解析】

由题得x=7,再利用中位数的公式求这组数据的中位数.【详解】因为数据2,4,5,,7,9的众数是7,所以,则这组数据的中位数是.故答案为6【点睛】本题主要考查众数的概念和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.15、【解析】

由三点、、共线,则有,再利用向量共线的坐标运算即可得解.【详解】解:由、、,则,,又三点、、共线,则,则,解得:,故答案为:.【点睛】本题考查了向量共线的坐标运算,属基础题.16、6【解析】

利用分层抽样的定义求解.【详解】设从高一年级的学生中抽取x名,由分层抽样的知识可知,解得x=6.故答案为6.【点睛】本题主要考查分层抽样,意在考查学生对该知识的掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.试题解析:(Ⅰ)设等差数列{an}的公差为d,由题意得d===1.∴an=a1+(n﹣1)d=1n设等比数列{bn﹣an}的公比为q,则q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵数列{1n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{bn}的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列求和.18、(1);(2)8.75元.【解析】

(1)根据最小二乘法求线性回归方程;(2)利用线性回归方程建立利润的函数,再求此函数的最大值.【详解】(1)关于的回归方程为.(2)利润该函数的对称轴方程是,故销售单价定为元时,企业才能获得最大利润.【点睛】本题考查线性回归方程和求利润的最值,属于基础题.19、(1),(2)见解析【解析】

(1)依次令,,解出即可。(2)由知当时,两式相减,化简即可得证。【详解】解(1)∵,∴当时,;当时,,∴;当时,,∴.(2)证明:∵,①∴当时,,②①-②得,∴,即.∴.∵.∴,∴.即是以4为首项,2为公比的等比数列.【点睛】本题考查公式的应用,属于基础题。20、(1);(2).【解析】

试题分析:(1)两个圆关于直线对称,那么就是半径相等,圆心关于直线对称,利用斜率相乘等于和中点在直线上建立方程,解方程组求出圆心坐标,同时求得圆的半径,由此求得圆的标准方程;(2)设,则,代入化简得,利用三角换元,设,所以.试题解析:(1)设圆心,则,解得,则圆的方程为,将点的坐标代入得,故圆的方程为.(2)设,则,且,令,∴,故的最小值为-1.考点:直线与圆的位置关系,向量.21、(1);(2)见解析;(3)见解析.【解析】

(1)先由条件得是三角形数列,再利用,是数列的“保三角形函数”,得到,解得的取值范围;(2)先利用条件求出数列的通项公式,再证明其满足“三角形”数列的定义即可;(3)根据函数,,是数列1,,的“保三角形函数”,可以得到①1,,是三角形数列,所以,即,②数列中的各项必须在定义域内,即,③,,是三角形数列;结论为在利用,是单调递减函数,就可求出对应的范围,即可证明.【详解】(1)解:显然,对任意正整数都成立,即是三角形数列,因为,显然有,由得,解得,所以当时,是数列的“保三角形函数”;(2)证:由,当时,,∴,∴,当时,即,解得,∴,∴数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论