版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南丰一中2025届数学高一下期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列中,若,,则()A. B.0 C.1 D.62.已知函数(,)的部分图像如图所示,则的值分别是()A. B.C. D.3.函数的定义域为()A. B. C. D.4.已知变量满足约束条件,则的最大值为()A.8 B.7 C.6 D.45.在中,角,,所对的边分别为,,,若,则最大角的余弦值为()A. B. C. D.6.在棱长为2的正方体中,是内(不含边界)的一个动点,若,则线段的长的取值范围为()A. B. C. D.7.已知函数在处取得极小值,则的最小值为()A.4 B.5 C.9 D.108.如图,长方体中,,,那么异面直线与所成角的余弦值是()A. B. C. D.9.等差数列中,则()A.8 B.6 C.4 D.310.已知,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆及点,若满足:存在圆C上的两点P和Q,使得,则实数m的取值范围是________.12.已知等差数列满足,则____________.13.在等比数列中,,的值为________14.当函数取得最大值时,=__________.15.若函数的图象与直线恰有两个不同交点,则的取值范围是________.16.102,238的最大公约数是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对表示“甲在号车站下车,乙在号车站下车”(Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(Ⅱ)求甲、乙两人同在第3号车站下车的概率;(Ⅲ)求甲、乙两人在不同的车站下车的概率.18.足球,有“世界第一运动的美誉,是全球体育界最具影响力的单项体育运动之一.足球传球是足球运动技术之一,是比赛中组织进攻、组织战术配合和进行射门的主要手段.足球截球也是足球运动技术的一种,是将对方控制或传出的球占为己有,或破坏对方对球的控制的技术,是比赛中由守转攻的主要手段.这两种运动技术都需要球运动员的正确判断和选择.现有甲、乙两队进行足球友谊赛,A、B两名运动员是甲队队员,C是乙队队员,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.现A沿北偏西60°方向水平传球,球速为10m/s,同时B沿北偏西30°方向以10m/s的速度前往接球,C同时也以10m/s的速度前去截球.假设球与B、C都在同一平面运动,且均保持匀速直线运动.(1)若C沿南偏西60°方向前去截球,试判断B能否接到球?请说明理由.(2)若C改变(1)的方向前去截球,试判断C能否球成功?请说明理由.19.已知函数的图象过点.(1)求的值;(2)判断的奇偶性并证明.20.在中,内角,,所对的边分别为,,.已知.(Ⅰ)求;(Ⅱ)若,,求的值.21.己知函数.(1)若,,求;(2)当为何值时,取得最大值,并求出最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据等差数列性质得到答案.【详解】等差数列中,若,【点睛】本题考查了等差数列的性质,属于简单题.2、B【解析】
通过函数图像可计算出三角函数的周期,从而求得w,再代入一个最低点即可得到答案.【详解】,,又,,,又,,故选B.【点睛】本题主要考查三角函数的图像,通过周期求得w是解决此类问题的关键.3、C【解析】要使函数有意义,需使,即,所以故选C4、B【解析】
先画出满足约束条件的平面区域,然后求出目标函数取最大值时对应的最优解点的坐标,代入目标函数即可求出答案.【详解】满足约束条件的平面区域如下图所示:作直线把直线向上平移可得过点时最小当,时,取最大值1,故答案为1.【点睛】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,找出目标函数的最优解点的坐标是解答本题的关键.5、D【解析】
设,由余弦定理可求出.【详解】设,所以最大的角为,故选D.【点睛】本题主要考查了余弦定理,大边对大角,属于中档题.6、C【解析】
先判断是正四面体,可得正四面体的棱长为,则的最大值为的长,的最小值是到平面的距离,结合不在三角形的边上,计算可得结果.【详解】由正方体的性质可知,是正四面体,且正四面体的棱长为,在内,的最大值为,的最小值是到平面的距离,设在平面的射影为,则为正三角形的中心,,,的最小值为,又因为不在三角形的边上,所以的范围是,故选C.【点睛】本题主要考查正方体的性质及立体几何求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义以及平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.7、C【解析】由,得,则,所以,所以,当且仅当,即时,等号成立,故选C.8、A【解析】
可证得四边形为平行四边形,得到,将所求的异面直线所成角转化为;假设,根据角度关系可求得的三边长,利用余弦定理可求得余弦值.【详解】连接,四边形为平行四边形异面直线与所成角即为与所成角,即设,,,,在中,由余弦定理得:异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解问题,关键是能够通过平行关系将问题转化为相交直线所成角,在三角形中利用余弦定理求得余弦值.9、D【解析】
设等差数列的公差为,根据题意,求解,进而可求得,即可得到答案.【详解】由题意,设等差数列的公差为,则,即,又由,故选D.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】
利用二倍角公式变形为,然后利用弦化切的思想求出的值,可得出角的值.【详解】,化简得,,则,,因此,,故选C.【点睛】本题考查二倍角公式的应用,考查弦切互化思想的应用,考查给值求角的问题,着重考查学生对三角恒等变换思想的应用能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设出点P、Q的坐标,利用平面向量的坐标运算以及两圆相交的条件求出实数m的取值范围.【详解】设点,由得,由点在圆上,得,又在圆上,,与有交点,则,解得故实数m的取值范围为.故答案为:【点睛】本题考查了向量的坐标运算、利用圆与圆的位置关系求参数的取值范围,属于中档题.12、9【解析】
利用等差数列下标性质求解即可【详解】由等差数列的性质可知,,则.所以.故答案为:9【点睛】本题考查等差数列的性质,熟记性质是关键,是基础题13、【解析】
根据等比数列的性质,可得,即可求解.【详解】由题意,根据等比数列的性质,可得,解得.故答案为:【点睛】本题主要考查了等比数列的性质的应用,其中解答熟记等比数列的性质,准确计算是解答的关键,着重考查了计算能力,属于基础题.14、【解析】
利用辅助角将函数利用两角差的正弦公式进行化简,求得函数取得最大值时的与的关系,从而求得,,可得结果.【详解】因为函数,其中,,当时,函数取得最大值,此时,∴,,∴故答案为【点睛】本题考查了两角差的正弦公式的逆用,着重考查辅助角公式的应用与正弦函数的性质,属于中档题.15、【解析】
作出函数的图像,根据图像可得答案.【详解】因为,所以,所以,所以,作出函数的图像,由图可知故答案为:【点睛】本题考查了正弦型函数的图像,考查了数形结合思想,属于基础题.16、34【解析】试题分析:根据辗转相除法的含义,可得238=2×102+34,102=3×34,所以得两个数102、238的最大公约数是34.故答案为34.考点:辗转相除法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(2,2)、(2,3)、(2,4)、(3,2)、(3,3)、(3,4)、(4,2)、(4,3)、(4,4)(Ⅱ)(Ⅲ)【解析】(Ⅰ)甲、乙两人下车的所有可能的结果为(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)(Ⅱ)设甲、乙两人同在第3号车站下车的的事件为A,则(Ⅲ)设甲、乙两人在不同的车站下车的事件为B,则18、(1)能接到;(2)不能接到【解析】
(1)在中由条件可得,,进一步可得为等边三角形,然后计算运动到点所需时间即可判断;(2)建立平面直角坐标系,作于,求出直线的方程,然后计算到直线的距离即可判断.【详解】(1)如图所示,在中,,,,,,由题意可知,如果不运动,经过,可以接到球,在上取点,使得,,为等边三角形,,,队员运动到点要,此时球运动了.所以能接到球.(2)建立如图所示的平面直角坐标系,作于,所以直线的方程为:,经过,运动了.点到直线的距离,所以以为圆心,半径长为的圆与直线相离.故改变(1)的方向前去截球,不能截到球.【点睛】本题主要考查了三角形的实际应用,以及点到直线的距离的应用,考查了推理与运算能力,属中档题.19、(1),(2)奇函数,证明见解析【解析】
(1)将代入解析式,解方程即可.【详解】(1)由题知:,解得.(2).,定义域为:.,.所以,所以为奇函数.【点睛】本题第一问考查对数的运算,第二问考查函数奇偶的判断,属于中档题.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)根据正弦定理将边角转化,结合三角函数性质即可求得角.(Ⅱ)先根据余弦定理求得,再由正弦定理求得,利用同角三角函数关系式求得,即可求得.即可求得的值.【详解】(Ⅰ)在中,由正弦定理可得即因为,所以,即又因为,可得(Ⅱ)在中,由余弦定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职水族科学与技术(水族养殖)试题及答案
- 2026年肉牛养殖(肉牛育肥管理)试题及答案
- 2025年中职餐饮管理(餐饮管理实务)试题及答案
- 2025年中职表演类(戏曲表演基础)试题及答案
- 2025年中职(园艺技术)花卉栽培阶段测试题及答案
- 中国特高压技术介绍
- 养老院老人紧急救援人员考核奖惩制度
- 养老院老人物品寄存制度
- 养老院老人安全出行制度
- 养老院环境保护管理制度
- 2026国家国防科技工业局所属事业单位第一批招聘62人笔试参考题库及答案解析
- 老年患者心理护理实践
- 2026海姆立克急救法更新要点解读培训课件
- 2026年寒假作业实施方案(第二版修订):骐骥驰骋势不可挡【课件】
- 2026年春教科版(新教材)小学科学三年级下册(全册)教学设计(附教材目录P131)
- 《创新与创业基础》课件-项目1 创新认知与思维培养
- 广东省汕头市金平区2024-2025学年九年级上学期期末物理试题(含答案)
- 临床用血技术规范2025年版与2000年版对照学习课件
- 2025职业技能培训学校自查报告范文(3篇)
- 2025-2026学年冀教版(2024)小学数学三年级上册(全册)教学设计(附目录P175)
- 无人机驾驶员培训基地项目可行性研究报告
评论
0/150
提交评论