版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市江大桥中学2025届高一下数学期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象大致为()A. B. C. D.2.在直角坐标系中,已知点,则的面积为()A. B.4 C. D.83.已知函数在区间(1,2)上是增函数,则实数a的取值范围是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)4.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数.例如:,,已知函数,则函数的值域为()A. B. C. D.5.函数的最大值为A.4 B.5 C.6 D.76.某次运动会甲、乙两名射击运动员成绩如右图所示,甲、乙的平均数分别为为、,方差分别为,,则()A. B.C. D.7.等差数列满足,则其前10项之和为()A.-9 B.-15 C.15 D.8.若满足条件C=60°,AB=,BC=的△ABC有()个A.
B. C.
D.39.函数是().A.周期为的偶函数 B.周期为的奇函数C.周期为的偶函数 D.周期为奇函数10.若两个球的半径之比为,则这两球的体积之比为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.向量.若向量,则实数的值是________.12.计算:________.13.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.14.有一个底面半径为2,高为2的圆柱,点,分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点或的距离不大于1的概率是________.15.函数的最小值为____________.16.函数在区间上的最大值为,则的值是_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象如图所示.(1)求这个函数的解析式,并指出它的振幅和初相;(2)求函数在区间上的最大值和最小值,并指出取得最值时的的值.18.已知圆的圆心在轴的正半轴上,半径为2,且被直线截得的弦长为.(1)求圆的方程;(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过,,三点的圆必过定点,并求出所有定点的坐标.19.某校从高一(1)班和(2)班的某次数学考试的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示(试卷满分为100分)(1)试计算这12份成绩的中位数;(2)用各班的样本方差比较两个班的数学学习水平,哪个班更稳定一些?20.已知函数是指数函数.(1)求的表达式;(2)判断的奇偶性,并加以证明(3)解不等式:.21.2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;(2)设该城市郊区和城区的居民户数比为,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用函数的性质逐个排除即可求解.【详解】函数的定义域为,故排除A、B.令又,即函数为奇函数,所以函数的图像关于原点对称,排除D故选:C【点睛】本题考查了函数图像的识别,同时考查了函数的性质,属于基础题.2、B【解析】
求出直线AB的方程及点C到直线AB的距离d,再求出,代入即可得解.【详解】,即,点到直线的距离,,的面积为:.故选:B【点睛】本题考查直线的点斜式方程,点到直线的距离与两点之间的距离公式,属于基础题.3、C【解析】
由题意可得在上为减函数,列出不等式组,由此解得的范围.【详解】∵函数在区间上是增函数,∴函数在上为减函数,其对称轴为,∴可得,解得.故选:C.【点睛】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.4、D【解析】
分离常数法化简f(x),根据新定义即可求得函数y=[f(x)]的值域.【详解】,又>0,∴,∴∴当x∈(1,1)时,y=[f(x)]=1;当x∈[1,)时,y=[f(x)]=1.∴函数y=[f(x)]的值域是{1,1}.故选D.【点睛】本题考查了新定义的理解和应用,考查了分离常数法求一次分式函数的值域,是中档题.5、B【解析】试题分析:因为,而,所以当时,取得最大值5,选B.【考点】正弦函数的性质、二次函数的性质【名师点睛】求解本题易出现的错误是认为当时,函数取得最大值.6、C【解析】试题分析:,;,,故选C.考点:茎叶图.【易错点晴】本题考查学生的是由茎叶图中的数据求平均数和方差,属于中档题目.由茎叶图观察数据,用茎表示成绩的整数环数,叶表示小数点后的数字,利用平均值公式及标准差公式求出两个样本的平均数和方差,一般平均数反映的是一组数据的平均水平,平均数越大,则该名运动员的平均成绩越高;方差式用来描述一组数据的波动大小的指标,方差越小,说明数据波动越小,即该名运动员的成绩越稳定.7、D【解析】由已知(a4+a7)2=9,所以a4+a7=±3,从而a1+a10=±3.所以S10=×10=±15.故选D.8、C【解析】
通过判断与c判断大小即可得到知道三角形个数.【详解】由于,所以△ABC有两解,故选C.【点睛】本题主要考查三角形解得个数判断,难度不大.9、B【解析】因,故是奇函数,且最小正周期是,即,应选答案B.点睛:解答本题时充分运用题设条件,先借助二倍角的余弦公式的变形,将函数的形式进行化简,然后再验证函数的奇偶性与周期性,从而获得问题的答案.10、C【解析】
根据球的体积公式可知两球体积比为,进而得到结果.【详解】由球的体积公式知:两球的体积之比故选:【点睛】本题考查球的体积公式的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、-3【解析】
试题分析:∵,∴,又∵,∴,∴,∴考点:本题考查了向量的坐标运算点评:熟练运用向量的坐标运算是解决此类问题的关键,属基础题12、3【解析】
直接利用数列的极限的运算法则求解即可.【详解】.故答案为:3【点睛】本题考查数列的极限的运算法则,考查计算能力,属于基础题.13、【解析】
根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.14、【解析】
本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点到点,的距离不大于1的概率;【详解】解:由题意可知,点P到点或的距离都不大于1的点组成的集合分别以、为球心,1为半径的两个半球,其体积为,又该圆柱的体积为,则所求概率为.故答案为:【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.15、【解析】
将函数构造成的形式,用换元法令,在定义域上根据新函数的单调性求函数最小值,之后可得原函数最小值。【详解】由题得,,令,则函数在递增,可得的最小值为,则的最小值为.故答案为:【点睛】本题考查了换元法,以及函数的单调性,是基础题。16、【解析】
利用同角三角函数平方关系,易将函数化为二次型的函数,结合余弦函数的性质,及函数在上的最大值为1,易求出的值.【详解】函数又函数在上的最大值为1,≤0,又,且在上单调递增,所以即.故答案为:【点睛】本题考查的知识点是三角函数的最值,其中利用同角三角函数平方关系,将函数化为二次型的函数,是解答本题的关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数的解析式为,其振幅是2,初相是(2)时,函数取得最大值0;时,函数取得最小值勤-2【解析】
(1)根据图像写出,由周期求出,再由点确定的值.(2)根据的取值范围确定的取值范围,再由的单调求出最值【详解】(1)由图象知,函数的最大值为2,最小值为-2,∴,又∵,∴,,∴.∴函数的解析式为.∵函数的图象经过点,∴,∴,又∵,∴.故函数的解析式为,其振幅是2,初相是.(2)∵,∴.于是,当,即时,函数取得最大值0;当,即时,函数取得最小值为-2.【点睛】本题考查由图像确定三角函数、给定区间求三角函数的最值,属于基础题.18、(1)圆:.(2)证明见解析;,.【解析】
(1)设出圆心坐标,利用点到直线距离公式以及圆的弦长列方程,解方程求得圆心坐标,进而求得圆的方程.(2)设出点坐标,根据过圆的切线的几何性质,得到过,,三点的圆是以为直径的圆.设出圆上任意一点的坐标,利用,结合向量数量积的坐标运算进行化简,得到该圆对应的方程,根据方程过的定点与无关列方程组,解方程组求得该圆所过定点.【详解】解:(1)设圆心,则圆心到直线的距离.因为圆被直线截得的弦长为∴.解得或(舍),∴圆:.(2)已知,设,∵为切线,∴,∴过,,三点的圆是以为直径的圆.设圆上任一点为,则.∵,,∴即.若过定点,即定点与无关令解得或,所以定点为,.【点睛】本小题主要考查圆的几何性质,考查圆的弦长有关计算,考查曲线过定点问题的求解策略,考查向量数量积的坐标运算,属于中档题.19、(1)80;(2)(1)班.【解析】
(1)从茎叶图可直接得到答案;(2)通过方差公式计算出两个半的方差,方差更小的更稳定.【详解】(1)从茎叶图中可以看到,这12份成绩按从小到大排列,第6个是78,第7个是82,所以中位数为.(2)由表中数据,易得(1)班的6份成绩的平均数,(2)班的6份成绩的平均数,所以(1)班的6份成绩的方差为;(2)班的6份成绩的方差为.所以有,说明(1)班成绩波动较小,(2)班两极分化较严重些,所以(1)班成绩更稳定.【点睛】本题主要考查中位数,平均数,方差的相关计算和性质,意在考查学生的计算能力及分析能力,难度不大.20、(1)(2)见证明;(3)【解析】
(1)根据指数函数定义得到,检验得到答案.(2),判断关系得到答案.(3)利用函数的单调性得到答案.【详解】解:(1)∵函数是指数函数,且,∴,可得或(舍去),∴;(2)由(1)得,∴,∴,∴是奇函数;(3)不等式:,以2为底单调递增,即,∴,解集为.【点睛】本题考查了函数的定义,函数的奇偶性,解不等式,意在考查学生的计算能力.21、(1)(2)符合【解析】
:(1)先列举出从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件,再列举其中年人均用水量都不超过30吨的基本事件,最后计算即可.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意计算该城市年人均用水量不超过30吨的居民用户的百分率.【详解】解:(1)从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(32,34)共10个.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门窗安装工程合同
- 科教年度工作计划模板7篇
- 体育馆门头房租赁合同
- 化肥公司医师聘用合同
- 学校建设电梯司机劳务协议
- 旅游度假鱼塘施工合同范本
- 临时司机招聘协议零时工
- 城市化妆品运输安全管理办法
- 个体玩具店店长聘用合同
- 汽车销售中介佣金协议
- GB/T 17892-2024优质小麦
- 调酒初级基础理论知识单选题100道及答案解析
- 危废治理项目经验-危废治理案例分析
- 南京市2024-2025学年六年级上学期11月期中调研数学试卷二(有答案)
- 汽车防冻液中毒
- 粉条产品购销合同模板
- 2024至2030年中国自动车配件行业投资前景及策略咨询研究报告
- 2024-2030年中国蔗糖行业市场深度调研及发展趋势与投资前景研究报告
- 北师版 七上 数学 第四章 基本平面图形《角-第2课时 角的大小比较》课件
- 外研版小学英语(三起点)六年级上册期末测试题及答案(共3套)
- 北师大版(2024新版)七年级上册生物期中学情调研测试卷(含答案)
评论
0/150
提交评论