版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
乐成公立寄宿学校2025届高一数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为A.2 B.4 C.6 D.82.如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为()A. B. C. D.3.若,则()A.-4 B.3 C.4 D.-34.下列函数中最小正周期为的是()A. B. C. D.5.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生 B.200号学生 C.616号学生 D.815号学生6.已知数列的前项和为,且,若,,则的值为()A.15 B.16 C.17 D.187.下面四个命题:①“直线a∥直线b”的充要条件是“a平行于b所在的平面”;②“直线l⊥平面α内所有直线”的充要条件是“l⊥平面α”;③“直线a、b为异面直线”的必要不充分条件是“直线a、b不相交”;④“平面α∥平面β”的充分不必要条件是“α内存在不共线的三点到β的距离相等”;其中正确命题的序号是()A.①② B.②③ C.③④ D.②④8.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则9.已知数列的前项和为,,且满足,若,则的值为()A. B. C. D.10.设在中,角所对的边分别为,若,则的形状为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定二、填空题:本大题共6小题,每小题5分,共30分。11.已知在中,角的大小依次成等差数列,最大边和最小边的长是方程的两实根,则__________.12.已知向量,.若向量与垂直,则________.13.函数的值域是______.14.甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为_________.15.若,,,则M与N的大小关系为___________.16.将角度化为弧度:________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列满足,前项和.(1)求的通项公式(2)设等比数列满足,,求的通项公式及的前项和.18.直线经过点,且与圆相交与两点,截得的弦长为,求的方程.19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)1:12:13:44:520.已知函数的图象如图所示.(1)求这个函数的解析式,并指出它的振幅和初相;(2)求函数在区间上的最大值和最小值,并指出取得最值时的的值.21.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.(1)求证:AD⊥平面BFED;(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据平均数相同求出x的值,再根据方差的定义计算即可.【详解】根据茎叶图中的数据知,甲、乙二人的平均成绩相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均数为=90;根据茎叶图中的数据知甲的成绩波动性小,较为稳定(方差较小),所以甲成绩的方差为s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故选A.【点睛】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况.2、B【解析】,,.选B.点睛:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.3、A【解析】
已知等式左边用诱导公式变形后用正弦和二倍角公式化简,右边用切化弦法变形,再由二倍角公式化简后可得.【详解】,,∴,.故选:A.【点睛】本题考查诱导公式,考查二倍角公式,同角间的三角函数关系,掌握三角函数恒等变形公式,确定选用公式的顺序是解题关键.4、C【解析】
对A选项,对赋值,即可判断其最小正周期不是;利用三角函数的周期公式即可判断B、D的最小正周期不是,问题得解.【详解】对A选项,令,则,不满足,所以不是以为周期的函数,其最小正周期不为;对B选项,的最小正周期为:;对D选项,的最小正周期为:;排除A、B、D故选C【点睛】本题主要考查了三角函数的周期公式及周期函数的定义,还考查了赋值法,属于基础题.5、C【解析】
等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若,则,不合题意;若,则,不合题意;若,则,符合题意;若,则,不合题意.故选C.【点睛】本题主要考查系统抽样.6、B【解析】
推导出数列是等差数列,由解得,由此利用能求出的值.【详解】数列的前项和为,且数列是等差数列解得解得故选:【点睛】本题考查等差数列的判定和基本量的求解,属于基础题.7、B【解析】
逐项分析见详解.【详解】①“a平行于b所在的平面”不能推出“直线a∥直线b”,如:正方体上底面一条对角线平行于下底面,但上底面的一条对角线却不平行于下底面非对应位置的另一条对角线,故错误;②“直线l⊥平面α内所有直线”是“l⊥平面α”的定义,故正确;③“直线a、b不相交”不能推出“直线a、b为异面直线”,这里可能平行;“直线a、b为异面直线”可以推出“直线a、b不相交”,所以是必要不充分条件,故正确;④“α内存在不共线的三点到β的距离相等”不能推出“平面α∥平面β”,这里包含了平面相交的情况,“平面α∥平面β”能推出“α内存在不共线的三点到β的距离相等”,所以是必要不充分条件,故错误.故选B.【点睛】本题考查空间中平行与垂直关系的判断,难度一般.对可以利用判定定理和性质定理直接分析的问题,可直接判断;若无法直接判断的问题可采用作图法或者排除法判断.8、C【解析】
在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.9、D【解析】
由递推关系可证得数列为等差数列,利用等差数列通项公式求得公差;利用等差数列通项公式和前项和公式分别求得和,代入求得结果.【详解】由得:数列为等差数列,设其公差为,,解得:,本题正确选项:【点睛】本题考查等差数列基本量的计算,涉及到利用递推关系式证明数列为等差数列、等差数列通项公式和前项和公式的应用.10、B【解析】
利用正弦定理可得,结合三角形内角和定理与诱导公式可得,从而可得结果.【详解】因为,所以由正弦定理可得,,所以,所以是直角三角形.【点睛】本题主要考查正弦定理的应用,属于基础题.弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
本题首先可根据角的大小依次成等差数列计算出,然后根据最大边和最小边的长是方程的两实根得到以及,最后根据余弦定理即可得出结果.【详解】因为角成等差数列,所以,又因为,所以.设方程的两根分别为、,则,由余弦定理可知:,所以.【点睛】本题考查根据余弦定理求三角形边长,考查等差中项以及韦达定理的应用,余弦定理公式为,体现了综合性,是中档题.12、7【解析】
由与垂直,则数量积为0,求出对应的坐标,计算即可.【详解】,,,又与垂直,故,解得,解得.故答案为:7.【点睛】本题考查通过向量数量积求参数的值.13、【解析】
将函数化为的形式,再计算值域。【详解】因为所以【点睛】本题考查三角函数的值域,属于基础题。14、【解析】
利用古典概型的概率求解.【详解】甲、乙两人选择交通工具总的选择有种,他们选择相同交通工具有3种情况,所以他们选择相同交通工具的概率为.故答案为:.【点睛】本题考查古典概型,要用计数原理进行计数,属于基础题.15、【解析】
根据自变量的取值范围,利用作差法即可比较大小.【详解】,,,所以当时,所以,即,故答案为:.【点睛】本题考查了作差法比较整式的大小,属于基础题.16、【解析】
根据角度和弧度的互化公式求解即可.【详解】.故答案为:.【点睛】本题考查角度和弧度的互化公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解析】
(1)设的公差为,则由已知条件得,.化简得解得故通项公式,即.(2)由(1)得.设的公比为,则,从而.故的前项和.18、或【解析】
直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.19、(1)0.005;(2)平均分为73,众数为65,中位数为;(3)10【解析】
(1)根据频率之和为1,直接列式计算即可;(2)平均数等于每组的中间值乘以该组频率,再求和;众数指频率最大的一组的中间值;中位数两端的小长方形面积之和均为0.5;(3)根据题意分别求出,,,的人数,即可得出结果.【详解】(1)由频率分布直方图可得:,(2)平均分为众数为65分.中位数为(3)数学成绩在的人数为,在的人数为,在的人数为,在的人数为,在的人数为,所以数学成绩在之外的人数为100-5-20-40-25=10.【点睛】本题主要考查样本估计总体,由题中频率分布直方图,结合平均数、中位数等概念,即可求解,属于基础题型.20、(1)函数的解析式为,其振幅是2,初相是(2)时,函数取得最大值0;时,函数取得最小值勤-2【解析】
(1)根据图像写出,由周期求出,再由点确定的值.(2)根据的取值范围确定的取值范围,再由的单调求出最值【详解】(1)由图象知,函数的最大值为2,最小值为-2,∴,又∵,∴,,∴.∴函数的解析式为.∵函数的图象经过点,∴,∴,又∵,∴.故函数的解析式为,其振幅是2,初相是.(2)∵,∴.于是,当,即时,函数取得最大值0;当,即时,函数取得最小值为-2.【点睛】本题考查由图像确定三角函数、给定区间求三角函数的最值,属于基础题.21、(1)证明见解析(2)θ最小值为60°【解析】
(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再结合面面垂直的判定,证得DE⊥平面ABCD,即可证得AD⊥平面BFED;(2)以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际环保项目担保协议范例
- 设计外包合同书范本
- 合资项目合作合同
- 信托劳务派遣合同
- 电梯井专项施工方案
- 农贸市场经营管理及方案
- 定制股票配资服务合同
- 汽车涂料代加工生产合同
- 办公用品按揭合同
- 工业机器人领域职业教育合作项目实施方案
- 别墅改造项目合同书
- 期中测试卷(1-4单元)(试题)-2024-2025学年六年级上册数学北师大版
- 学年深圳市南山区初中八年级的上数学期末试卷试题包括答案
- 2024年资格考试-注册质量经理考试近5年真题附答案
- 2023年甘肃白银有色集团股份有限公司招聘考试真题
- 人教版三年级语文上册第三、四单元试卷(含答案)
- 电磁场与电磁波(第五版)完整全套教学课件
- 人教版七年级上册数学期中测试卷(含答案)
- 主题三 第2课 设计制作我的汽车(教学设计)教科版六年级下册综合实践活动
- 2024年汽车操作系统趋势及TOP10分析报告
- 浙江省绍兴市诸暨市浣东中学2022-2023学年八年级上学期期中英语试卷
评论
0/150
提交评论