




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省聊城市茌平县第二中学2025届数学高一下期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,点是边上的靠近的三等分点,则()A. B.C. D.2.已知向量a→=(2,0),|b→|=1,a→⋅A.2π3 B.π3 C.π3.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.4.向量,,,满足条件.,则A. B. C. D.5.为了治疗某种疾病,研制了一种新药,为确定该药的疗效,生物实验室有只小动物,其中有3只注射过该新药,若从这只小动物中随机取出只检测,则恰有只注射过该新药的概率为()A. B. C. D.6.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为()A. B. C. D.7.若三角形三边的长度为连续的三个自然数,则称这样的三角形为“连续整边三角形”.下列说法正确的是()A.“连续整边三角形”只能是锐角三角形B.“连续整边三角形”不可能是钝角三角形C.若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形有且仅有1个D.若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形可能有2个8.在中,角所对的边分边为,已知,则此三角形的解的情况是()A.有一解 B.有两解 C.无解 D.有解但解的个数不确定9.如图,已知四面体为正四面体,分别是中点.若用一个与直线垂直,且与四面体的每一个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为().A. B. C. D.10.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是()A.“至少1名男生”与“全是女生”B.“至少1名男生”与“至少有1名是女生”C.“至少1名男生”与“全是男生”D.“恰好有1名男生”与“恰好2名女生”二、填空题:本大题共6小题,每小题5分,共30分。11.如图,海岸线上有相距海里的两座灯塔A,B,灯塔B位于灯塔A的正南方向.海上停泊着两艘轮船,甲船位于灯塔A的北偏西,与A相距海里的D处;乙船位于灯塔B的北偏西方向,与B相距海里的C处,此时乙船与灯塔A之间的距离为海里,两艘轮船之间的距离为海里.12.点从点出发,沿单位圆顺时针方向运动弧长到达点,则点的坐标为__________.13.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为_______.14.已知满足约束条件,则的最大值为__________.15.5人排成一行合影,甲和乙不相邻的排法有______种.(用数字回答)16.已知等边三角形的边长为2,点P在边上,点Q在边的延长线上,若,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆,直线(1)求证:直线过定点;(2)求直线被圆所截得的弦长最短时的值;(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.18.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.19.已知函数.(1)求的最小正周期和最大值;(2)求在上的单调区间20.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.21.如图,已知矩形ABCD中,,,M是以CD为直径的半圆周上的任意一点(与C,D均不重合),且平面平面ABCD.(1)求证:平面平面BCM;(2)当四棱锥的体积最大时,求AM与CD所成的角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
将题中所体现的图形画出,可以很直观的判断向量的关系.【详解】如图有向量运算可以知道:,选择A【点睛】考查平面向量基本定理,利用好两向量加法的计算原则:首尾相连,首尾相接.2、A【解析】
直接利用向量夹角公式得到答案.【详解】解:向量a→=(2,0),|b→|=1,a可得cos<a→则a→与b的夹角为:2π故选:A.【点睛】本题考查向量的数量积的应用,向量的夹角的求法,是基本知识的考查.3、A【解析】
代入即可得结果.【详解】解:由已知,故选:A.【点睛】本题考查数列的项和项数之间的关系,是基础题.4、C【解析】向量,则,故解得.故答案为:C。5、B【解析】
将只注射过新药和未注射过新药的小动物分别编号,列出所有的基本事件,并确定事件“恰有只注射过该新药”所包含的基本事件的数目,然后利用古典概型的概率计算公式可该事件的概率.【详解】将只注射过新药的小动物编号为、、,只未注射新药的小动物编号为、、,记事件恰有只注射过该新药,所有的基本事件有:、、、、、、、、、、、、、、,共个,其中事件所包含的基本事件个数为个,由古典概型的概率公式得,故选B.【点睛】本题考查古典概型的概率公式,列举基本事件是解题的关键,一般在列举基本事件有枚举法和数状图法,列举时应注意不重不漏,考查计算能力,属于中等题.6、C【解析】
试题分析:将边长为1的正方形以其一边所在直线为旋转轴旋转一周得到的几何体为底面为半径为的圆、高为1的圆柱,其侧面展开图为长为,宽为1,所以所得几何体的侧面积为.故选C.7、C【解析】
举例三边长分别是的三角形是钝角三角形,否定A,B,通过计算求出最大角是最小角的二倍的三角形,从而可确定C、D中哪个正确哪个错误.【详解】三边长分别是的三角形,最大角为,则,是钝角,三角形是钝角三角形,A,B都错,如图中,,,是的平分线,则,∴,,∴,,又由是的平分线,得,∴,解得,∴“连续整边三角形”中最大角是最小角的2倍的三角形只有一个,边长分别为4,5,6,C正确,D错误.故选D.【点睛】本题考查余弦定理,考查命题的真假判断,数学上要说明一个命题是假命题,只要举一个反例即可,而要说明它是真命题,则要进行证明.8、C【解析】由三角形正弦定理可知无解,所以三角形无解,选C.9、A【解析】
通过补体,在正方体内利用截面为平行四边形,有,进而利用基本不等式可得解.【详解】补成正方体,如图.∴截面为平行四边形,可得,又且可得当且仅当时取等号,选A.【点睛】本题主要考查了线面的位置关系,截面问题,考查了空间想象力及基本不等式的应用,属于难题.10、D【解析】
从3名男生和2名女生中任选2名学生的所有结果有“2名男生”、“2名女生”、“1名男生和1名女生”.选项A中的两个事件为对立事件,故不正确;选项B中的两个事件不是互斥事件,故不正确;选项C中的两个事件不是互斥事件,故不正确;选项D中的两个事件为互斥但不对立事件,故正确.选D.二、填空题:本大题共6小题,每小题5分,共30分。11、5,【解析】
为等边三角形,所以算出,,再在中根据余弦定理易得CD的长.【详解】因为为等边三角形,所以.在中根据余弦定理解得.【点睛】此题考查余弦定理的实际应用,关键点通过已知条件转换为数学模型再通过余弦定理求解即可,属于较易题目.12、【解析】
由题意可得OQ恰好是角的终边,利用任意角的三角函数的定义,求得Q点的坐标.【详解】点P从点出发,沿单位圆顺时针方向运动弧长到达Q点,则OQ恰好是角的终边,故Q点的横坐标,纵坐标为,故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于容易题.13、2【解析】
根据抽取6个城市作为样本,得到每个个体被抽到的概率,用概率乘以丙组的数目,即可得到结果.【详解】城市有甲、乙、丙三组,对应的城市数分别为4,12,8.
本市共有城市数24,用分层抽样的方法从中抽取一个容量为6的样本,
每个个体被抽到的概率是,丙组中对应的城市数8,则丙组中应抽取的城市数为,故答案为2.【点睛】本题主要考查分层抽样的应用以及古典概型概率公式的应用,属于基础题.分层抽样适合总体中个体差异明显,层次清晰的抽样,其主要性质是,每个层次,抽取的比例相同.14、57【解析】
作出不等式组所表示的可行域,平移直线,观察直线在轴的截距取最大值时的最优解,再将最优解代入目标函数可得出目标函数的最大值.【详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,该直线在轴上的截距取最大值,此时,取最大值,即,故答案为.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线结合在坐标轴上的截距取最值时,找最优解求解,考查数形结合数学思想,属于中等题.15、72【解析】
先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为.【详解】先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为种,故答案为72【点睛】本题考查排列、组合计数原理的应用,考查基本运算能力.16、【解析】
以为轴建立平面直角坐标系,设,用t表示,求其最小值即可得到本题答案.【详解】过点A作BC的垂线,垂足为O,以为轴建立平面直角坐标系.作PM垂直BC交于点M,QH垂直y轴交于点H,CN垂直HQ交于点N.设,则,故有所以,,当时,取最小值.故答案为:【点睛】本题主要考查利用建立平面直角坐标系解决向量的取值范围问题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)直线过定点(2).(3)在直线上存在定点,使得为常数.【解析】分析:(Ⅰ)利用直线系方程的特征,直接求解直线l过定点A的坐标.(Ⅱ)当AC⊥l时,所截得弦长最短,由题知,r=2,求出AC的斜率,利用点到直线的距离,转化求解即可.(Ⅲ)由题知,直线MC的方程为,假设存在定点N满足题意,则设P(x,y),,得,且,求出λ,然后求解比值.详解:(Ⅰ)依题意得,令且,得直线过定点(Ⅱ)当时,所截得弦长最短,由题知,,得,由得(Ⅲ)法一:由题知,直线的方程为,假设存在定点满足题意,则设,,得,且整理得,上式对任意恒成立,且解得,说以(舍去,与重合),综上可知,在直线上存在定点,使得为常数点睛:过定点的直线系A1x+B1y+C1+λ(A2x+B2y+C2)=0表示通过两直线l1∶A1x+B1y+C1=0与l2∶A2x+B2y+C2=0交点的直线系,而这交点即为直线系所通过的定点.18、(Ⅰ)-1;(Ⅱ)【解析】
(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【点睛】已知,若,则有;已知,若,则有.19、(1)f(x)的最小正周期为π,最大值为;(2)f(x)在上单调递增;在上单调递减.【解析】
(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得的最小正周期和最大值.(2)根据,利用正弦函数的单调性,即可求得在上的单调区间.【详解】解:(1)函数,即故函数的周期为,最大值为.(2)当时,,故当时,即时,为增函数;当时,即时,为减函数;即函数在上单调递增;在上单调递减.【点睛】本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.20、(Ⅰ);(Ⅱ)或.【解析】
分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.21、(1)证明见解析(2)【解析】
(1)只证明CM⊥平面ADM即可,即证明CM垂直于该平面内的两条相交直线,或者使用面面垂直的性质,本题的条件是平面CDM⊥平面ABCD,而M是以CD为直径的半圆周上一点,能够得到CM⊥DM,由面面垂直的性质即可证明;(2)当四棱锥M一ABCD的体积最大时,M为半圆周中点处,可得角MAB就是AM与CD所成的角,利用已知即可求解.【详解】(1)证明:CD为直径,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025办公室共享租赁合同范本
- 2025综合型技术开发合同
- 2025非本地员工劳动合同协议书
- 2025建筑工程施工合同常见争议条款解析
- 引领变革:工业机械新篇章
- 艺术感悟与实践
- 2025标准版家居装修合同格式
- 《校园安全宣教课件》
- 幼师新园感悟教育教学
- 2025年安徽环宇公路沥青材料有限责任公司招聘笔试参考题库附带答案详解
- 聋哑人辅助交流系统
- 带状疱疹病人的个案护理
- 《中药鉴定技术》课件-五味子的鉴定
- 大数据 AI大模型-智慧统计大数据平台解决方案(2023版)
- 江苏省安全员《B证》考试题库及答案
- 自杀及其预防课件
- 灰姑娘童话故事
- 铅锌矿的冶炼技术进展与设备改进
- 等离子切割机操作手册与安全操作规程
- 印刷合同:纸袋印刷合作
- 快学Scala(中文版第2版)
评论
0/150
提交评论